Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = AlMg5Si2Mn alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9827 KiB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 324
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

10 pages, 3334 KiB  
Proceeding Paper
A Study of the Microstructure of Non-Standardised Alternative Piston Aluminium–Silicon Alloys Subjected to Various Modifications: The Influence of Modification Treatments on the Microstructure and Properties of These Alloys
by Desislava Dimova, Valyo Nikolov, Bozhana Chuchulska, Veselin Tsonev and Nadezhda Geshanova
Eng. Proc. 2025, 100(1), 46; https://doi.org/10.3390/engproc2025100046 - 16 Jul 2025
Viewed by 205
Abstract
The present study examines the structure, properties and use of complex-alloyed hypereutectic aluminium-silicon alloys, emphasising the control of the morphology of primary silicon via treatment with various modifiers as well as their effects on its shape and distribution. Furthermore, this study reviews the [...] Read more.
The present study examines the structure, properties and use of complex-alloyed hypereutectic aluminium-silicon alloys, emphasising the control of the morphology of primary silicon via treatment with various modifiers as well as their effects on its shape and distribution. Furthermore, this study reviews the experimental work related to the simultaneous modification of primary and eutectic silicon, which leads to the conclusion that favourable results can be obtained by complex modification treatment involving first- and second-type modifiers. After being cast, the AlSi18Cu3CrMn and AlSi18Cu5Mg non-standardised piston alloys are subjected to T6 heat treatment intended to enhance their mechanical performance, harnessing the full potential of the alloying elements. A microstructural analysis of the shape and distribution of both primary and eutectic silicon crystals following heat treatment was employed to determine their microhardness. Full article
Show Figures

Figure 1

21 pages, 9512 KiB  
Article
Improved Microstructure and Enhanced Tensile Properties of Hypoeutectic AlMg5Si2Mn Alloy Modified by Yttrium
by Feng Jiang, Hongding Wang, Fanxu Meng, Qingchun Xiang, Yinglei Ren, Wei Zhang and Keqiang Qiu
Crystals 2025, 15(6), 535; https://doi.org/10.3390/cryst15060535 - 3 Jun 2025
Viewed by 358
Abstract
AlMg5Si2Mn alloys are widely used in the field of automotive castings. Since the morphology, size, and distribution of the primary Al dendrite and eutectic Mg2Si have a decisive influence on the mechanical properties of the alloy, a comprehensive analysis of AlMg5Si2Mn [...] Read more.
AlMg5Si2Mn alloys are widely used in the field of automotive castings. Since the morphology, size, and distribution of the primary Al dendrite and eutectic Mg2Si have a decisive influence on the mechanical properties of the alloy, a comprehensive analysis of AlMg5Si2Mn alloys with varying Y contents was conducted using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influence of Y on the microstructural evolution and mechanical behavior of the cast hypoeutectic AlMg5Si2Mn alloy was studied. Experimental findings indicate that the addition of Y significantly refines and alters the morphology of both primary Al and eutectic Mg2Si in AlMg5Si2Mn alloys. Specifically, in the alloy containing 0.45 wt.% Y, the primary Al undergoes a structural transformation from a coarse dendritic morphology to finer ellipsoidal grains, with a minimum secondary dendritic arm spacing (SDAS) of 18.6 ± 1.6 μm. Simultaneously, the eutectic Mg2Si morphology transitions from a coarse lamellar structure to finer worm-like, coral-like, and fibrous forms, exhibiting a reduced average length and aspect ratio (AR) of 3.1 ± 0.4. Furthermore, the AlMg5Si2Mn alloy leads to significant improvements in mechanical performance, particularly in tensile strength. The measured average ultimate tensile strength, yield strength, and elongation are 243.3 MPa, 199.0 MPa, and 8.5%, respectively, representing increases of 19.16%, 24.6%, and 203.6% compared to the Y-free alloy. The fracture mode of the alloy fracture transitioned from brittle fracture in its unmodified condition to ductile fracture characteristics. Full article
Show Figures

Figure 1

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 380
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

14 pages, 5677 KiB  
Article
Solidification Window in Al-Based Casting Alloys
by Simone Ferraro, Mauro Palumbo, Marcello Baricco and Alberto Castellero
Metals 2025, 15(5), 489; https://doi.org/10.3390/met15050489 - 26 Apr 2025
Viewed by 522
Abstract
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict [...] Read more.
Semi-solid processes of aluminium alloys, characterised by the coexistence of solid and liquid phases, offer advantages in terms of mechanical properties and fatigue resistance, thanks to the more globular microstructure. Thermodynamic models can be used to analyse the solidification behaviour and to predict the solidification window, ΔT. The CALPHAD method enables the calculation of the phases formed during solidification and the optimisation of alloy composition to meet specific industrial requirements. This study aims to assess how thermodynamic properties in both liquid and solid phases affect the ΔT. Initially, the influence of thermodynamic properties of pure components and interaction parameters was analysed in simplified regular binary systems. To compare these findings with real industrial systems, Al-based alloys were examined. Using available databases, the ΔT was estimated via the CALPHAD method adding alloying elements commonly found in secondary Al-alloys. Finally, the same minority alloying elements were added to Al-Si 8 and 11 wt.% alloys, and the corresponding ΔT were calculated. Cr, Fe, Mg, Mn, and Ti increase the ΔT, while Cu, Ni, and Zn decrease it. The obtained results may serve as a valuable tool for interpreting phenomenological observations and understanding the role of minority elements in the semi-solid processing of secondary Al-Si casting alloys. Full article
(This article belongs to the Special Issue Solidification and Phase Transformation of Light Alloys)
Show Figures

Figure 1

20 pages, 7246 KiB  
Article
Coated Mg Alloy Implants: A Spontaneous Wettability Transition Process with Excellent Antibacterial and Osteogenic Functions
by Sijia Yan, Shu Cai, You Zuo, Hang Zhang, Ting Yang, Lei Ling, Huanlin Zhang, Jiaqi Lu and Baichuan He
Materials 2025, 18(9), 1908; https://doi.org/10.3390/ma18091908 - 23 Apr 2025
Viewed by 533
Abstract
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a [...] Read more.
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a superhydrophobic surface exhibits excellent corrosion resistance and antibacterial adhesion performance, but superhydrophobic surfaces also hinder osteoblast adhesion and proliferation on the implants, resulting in unsatisfactory osteogenic properties. Therefore, it is necessary to achieve the wettability transition of the superhydrophobic surface at an early stage of implantation. In this work, superhydrophobic hydroxyapatite (HA)/calcium myristate (CaMS)/myristic acid (MA) composite coatings were prepared on AZ31B magnesium alloy using the hydrothermal and immersion methods. The composite coatings can spontaneously undergo the wettability transition from superhydrophobic to hydrophilic after complete exposure to simulated body fluid (SBF, a solution for modeling the composition and concentration of human plasma ions) for 9 h. The wettability transition mainly originated from the deposition and growth of the newly formed CaMS among the HA nanopillars during immersing, which deconstructed the micro-nano structure of the superhydrophobic coatings and directly exposed the HA to the water molecules, thereby significantly altering the wettability of the coatings. Benefiting from the superhydrophobic surface, the composite coating exhibited excellent antibacterial properties. After the wettability transition, the HA/CaMS/MA composite coating exhibited superior osteoblast adhesion performance. This work provides a strategy to enable a superhydrophobic coating to undergo spontaneous wettability transition in SBF, thereby endowing the coated magnesium alloy with a favorable osteogenic property. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

12 pages, 13014 KiB  
Article
Effect of Heat Treatment on Microstructure and Tensile Property of Laser-Powder-Bed-Melted Al–Mn–Mg–Sc–Zr Alloy
by Zhiqiang Cao, Hui Yin, Jin Jiang, Mingliang Cui, Hao Zhang and Sheng Cao
Materials 2025, 18(7), 1638; https://doi.org/10.3390/ma18071638 - 3 Apr 2025
Viewed by 570
Abstract
This study explored the effects of T5 and T6 heat treatments on the microstructure and tensile properties of a laser powder bed fusion (LPBF)-fabricated Al–Mn–Mg–Sc–Zr alloy. The as-built condition exhibited a bi-modal grain structure of equiaxed and columnar grains. Specimens after T5 heat [...] Read more.
This study explored the effects of T5 and T6 heat treatments on the microstructure and tensile properties of a laser powder bed fusion (LPBF)-fabricated Al–Mn–Mg–Sc–Zr alloy. The as-built condition exhibited a bi-modal grain structure of equiaxed and columnar grains. Specimens after T5 heat treatment also had a bi-modal microstructure with slight grain growth and the precipitation of secondary Al3Sc, which enhanced the yield strength via precipitation hardening but reduced ductility. In contrast, T6 treatment triggered recrystallization, and the microstructure was only coarse equiaxed α-Al grains. This microstructure change was accompanied by coarsened primary Al3X and Al6(Mn, Fe) precipitates, partial Mg2Si dissolution, and significant secondary Al3Sc particle growth. Consequently, T6-treated specimens showed lower strength than their T5 counterparts and the poorest ductility due to brittle fracture induced by the stress concentration effect of coarse precipitates at grain boundaries. Full article
(This article belongs to the Special Issue The Additive Manufacturing of Metallic Alloys (Second Edition))
Show Figures

Figure 1

18 pages, 10407 KiB  
Article
Kinetics of Precipitation Hardening Phases in Recycled 2017A Aluminum Alloy
by Grażyna Mrówka-Nowotnik, Grzegorz Boczkal and Damian Nabel
Materials 2025, 18(6), 1235; https://doi.org/10.3390/ma18061235 - 11 Mar 2025
Viewed by 1001
Abstract
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained [...] Read more.
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained intermetallic phases, including θ-Al2Cu, β-Mg2Si, Al7Cu2Fe, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3(SiCu)2, and was comparable to that of the primary alloy, confirming its potential for high-performance applications. During solution heat treatment, most of the primary intermetallic precipitates, such as Al2Cu, Mg2Si, and Q-Al4Cu2Mg8Si7, dissolved into the solid Al matrix. DSC analysis of the solution-treated alloy established the precipitation sequence as follows: α-ss → GP/GPB zones → θ″ → θ′/Q′ → θ-Al2Cu/Q-Al4Cu2Mg8Si7. The combined results from XRD, LM, TEM, and DSC confirmed that both θ and Q phases contributed to strengthening, with θ″ and θ′ phases playing a dominant role. Brinell hardness measurements during natural and artificial aging revealed that hardness increased with aging time, reaching a maximum value of 150.5 HB after ~22 h of artificial aging at 175 °C. The precipitation kinetics of the recycled 2017A alloy was studied via DSC measurements over a temperature range of ~25 to 550 °C, at heating rates of 5, 10, 15, 20, and 25 °C/min. The peak temperatures of clusters, GP zones, and hardening phases (θ′, θ″, θ, and Q) were analyzed to calculate the activation energy using mathematical models (Kissinger, Ozawa, and Boswell). The obtained values of activation energies of discontinuous precipitation were comparable across methods, with values for the θ″ phase of 89.94 kJ·mol−1 (Kissinger), 98.7 kJ·mol−1 (Ozawa), and 94.33 kJ·mol−1 (Boswell), while for the θ′ phase, they were 72.5 kJ·mol−1 (Kissinger), 81.9 kJ·mol−1 (Ozawa), and 77.2 kJ·mol−1 (Boswell). These findings highlighted the feasibility of using recycled 2017A aluminum alloy for structural applications requiring high strength and durability. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Figure 1

14 pages, 3787 KiB  
Article
Investigation of the Microstructure and Mechanical Properties of Heat-Treatment-Free Die-Casting Aluminum Alloys Through the Control of Laser Oscillation Amplitude
by Hong Xu, Jinyi Shao, Lijun Han, Rui Wang, Zhigong Jiang, Guanghui Miao, Zhonghao Zhang, Xiuming Cheng and Ming Bai
Materials 2025, 18(6), 1194; https://doi.org/10.3390/ma18061194 - 7 Mar 2025
Viewed by 760
Abstract
In this study, laser oscillation welding was utilized to offer an effective solution for the joint welding of heat-treatment-free die-cast aluminum alloys, which expands the practical applications of automotive structural parts and heat sinks for electronic devices. The effects of oscillation amplitude on [...] Read more.
In this study, laser oscillation welding was utilized to offer an effective solution for the joint welding of heat-treatment-free die-cast aluminum alloys, which expands the practical applications of automotive structural parts and heat sinks for electronic devices. The effects of oscillation amplitude on the macro-morphology, microstructure, and properties of the alloy weld were examined, and a molten pool flow model was developed to compare the behavior of the molten pool with and without oscillation. The results show that increasing the oscillation amplitude eliminates the coarse Al15(Fe,Mn)3Si2 phase, resulting in a finer and more uniform distribution of the eutectic Si and Mg2Si phases. At an oscillation amplitude of 7 mm, the maximum tensile shear load and displacement were 2761 N and 1.17 mm, respectively. Laser oscillation was found to enhance the fluidity of the molten pool, reduce porosity, improve weld quality, and effectively decrease cracks and inhomogeneous grain distribution. These findings provide a research basis for optimizing the laser oscillation welding process and for the practical welding of fabricated devices. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

19 pages, 17724 KiB  
Article
Analysis of Typical Inclusion Evolution and Formation Mechanism in the Smelting Process of W350 Non-Oriented Silicon Steel
by Jiagui Shi, Libin Yang, Bowen Peng, Guoqiang Wei and Yibo Yuan
Materials 2025, 18(6), 1188; https://doi.org/10.3390/ma18061188 - 7 Mar 2025
Viewed by 849
Abstract
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. [...] Read more.
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. By systematically sampling, at key nodes of the converter–RH refining–tundish smelting process, the change in cleanliness of molten steel in the whole smelting process, the evolution of typical inclusions, and the transformation rules for the precipitated phase were analyzed by means of SEM-EDS, ASPEX, and Thermal-Calc. The results indicate that the total oxygen mass fraction in the steel decreases by more than 95% after deoxidation alloying, and the average oxygen mass fraction in the RH outbound steel is 0.0012%. While the nitrogen mass fraction shows a rising trend as a whole, the average nitrogen mass fraction in the tundish steel reaches approximately 0.0014%. Before RH refining, large Al2O3–CaO–SiO2 and Al2O3–CaO–SiO2–MgO composite inclusions are the main inclusions. MnO and Al2O3–SiO2–MnO inclusions are the main inclusions after RH inlet and RH decarburization. After RH deoxidation with aluminum, the inclusions were almost entirely transformed into Al2O3 inclusions. After RH alloying, with the content of Si and Mn increased, the inclusions transformed into Al2O3–SiO2–MnO inclusions. The number of inclusions from RH desulfurization to the RH outbound stage declined significantly, and composite inclusions containing CaS and precipitates such as AlN and MnS began to appear. The inclusions’ main types were Al2O3–MgO–CaS, AlN–MnS, AlN, and Al2O3–MgO. The inclusions inside the tundish were the same, but the numbers were slightly increased due to the secondary oxidation of molten steel. More than 80% of the oxide inclusions in the whole process were between 1 μm and 5 μm in size. The average size and the number of inclusions per unit area reached 5.45 μm and 63.1 per mm2, respectively, after RH deoxidation, and respectively decreased to 3.71 μm and 1.9 per mm2 during the RH outbound stage, but both increased slightly in the tundish. Thermodynamic calculation shows that Al2O3–MgO inclusions are formed when w([Mg]) > 0.0033% in molten steel at 1873 K. Under the actual temperature of 1828K and w([Al]s) = 0.6515%, the range of w([Mg]) corresponding to the stable existence of Al2O3–MgO is between 0.0053% and 0.1676%. The liquidus temperature of W350 non-oriented silicon steel is 1489 °C. MnS and AlN inclusions are precipitated successively with the solidification of molten steel, and the precipitation temperatures are 1460.7 °C and 1422.2 °C, respectively. As the temperature decreases, the sequence of inclusion precipitation calculated in liquid was as follows: Al2O3–CaO → 2Al2O3–CaO + MnS → 6Al2O3–CaO → Al2O3 + AlN + MnS + CaS. Full article
Show Figures

Figure 1

19 pages, 5566 KiB  
Article
Microstructure and Mechanical Properties of AlSi10MnMg Alloy with Increased Content of Recycled Scrap
by Jaroslaw Piatkowski, Katarzyna Nowinska, Tomasz Matula, Grzegorz Siwiec, Michal Szucki and Beata Oleksiak
Materials 2025, 18(5), 1119; https://doi.org/10.3390/ma18051119 - 1 Mar 2025
Cited by 1 | Viewed by 947
Abstract
Increasing the share of circulating scrap in produced castings is not only due to optimizing production costs, but also the need to protect the environment realized by reducing production energy intensity, generating less waste, mitigating greenhouse gas emissions, and consuming fewer natural resources. [...] Read more.
Increasing the share of circulating scrap in produced castings is not only due to optimizing production costs, but also the need to protect the environment realized by reducing production energy intensity, generating less waste, mitigating greenhouse gas emissions, and consuming fewer natural resources. However, this is associated with maintaining the required properties of castings and considering the impact of impurities on the formation of the structure of aluminum alloys. This research concerns the AlSi10MnMg alloy, which introduces 50 to 75% (every 5%) of circulating scrap. This alloy is one of the most commonly used for producing gravity and pressure die-castings (HPDC), including engine parts and transport structural elements. Based on microscopic research, it was found that the increase in scrap content causes an increase in the share of iron, which results in pre-eutectic (from about 0.45 wt.% to 0.7 wt.% Fe) or even primary crystallization of iron phases (over 0.7 wt.% Fe), mainly the plate–needle phase β-Al5FeSi. Its unfavorable morphology and size cause the formation of numerous shrinkage porosity areas, which has an impact on the reduction in mechanical properties (reduction in UTS and YS by approx. 16% and elongation by approx. 18%, compared to the AlSi10MnMg alloy with 50% scrap content). It was found that the increase in the share of recycled scrap (from 50 to 75%) can be used only when the manganese content is increased. Its effect is to change the morphology of the β-Al5FeSi phase into α-Al15(Fe,Mn)3Si2, whose crystallization occurs in the temperature range of 540 to 555 °C and increases slightly with increasing manganese addition. It is essential to consider the appropriate value of the Mn/Fe quotient, which should be about 1/2, because a higher value may cause the formation of a sludge factor. This work aimed to determine the limiting iron content (contained in the scrap) at which the sequence of the β-Al5FeSi phase release (pre-eutectic or primary crystallization) changes. This sequence mainly affects the form of morphology, the dimensions of the β-Fe phase, and the proportion of shrinkage porosity. Full article
Show Figures

Figure 1

14 pages, 59884 KiB  
Article
Analysis of the Structure and Properties of Welded Joints Made from Aluminum Alloys by Electron Beam Welding (EBW) and Friction Stir Welding (FSW)
by Sonia Boczkal, Monika Mitka, Joanna Hrabia-Wiśnios, Bartłomiej Płonka, Marek St. Węglowski, Aleksandra Węglowska and Piotr Śliwiński
Crystals 2025, 15(3), 208; https://doi.org/10.3390/cryst15030208 - 22 Feb 2025
Cited by 1 | Viewed by 684
Abstract
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. [...] Read more.
One of the new areas that requires extensive study of the structure and properties of welded joints is the heat-affected zone (HAZ). This issue is particularly important for new constructions made of aluminium alloys intended for battery housing for powering electric car engines. Modern welding methods, such as EBW and FSW, meet the requirements related to the high precision of the process and the quality of the welded joint itself. This article presents the results of an analysis of the structure and strengthening of the HAZ of chemically modified AlMgSi(Cu) alloys via EBW and FSW. Microstructural observation was performed via SEM for each welded joint to determine the morphology of the precipitates. In the HAZ, β-Mg2Si, Q-Al,MgCu,Si and α-Al,Fe,Si (Mn,Cu) phases with larger sizes and rounded shapes were visible than they were directly in the weld made via the EBW method. The joints produced by the FSW method were characterised by a wide weld area and an irregular weld line. Analysis of the crystallographic orientation via EBSD and grain orientation spread (GOS) revealed differences in the shape of the grains and the degree of recrystallisation in the weld area between the FSW and EBW methods. The distributions of HB (FSW) hardness and HV (EBW) microhardness measurements revealed a slight decrease in hardening in the HAZ. In joints welded by both methods, the hardness of the welds for alloys with increased copper and chromium contents increased by approximately 5%. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

13 pages, 2188 KiB  
Article
Fluidity of Aluminium Foundry Alloys for Thin Wall Castings: Designing an Operating Methodology
by Osama Asghar, Manel da Silva, Raquel Busqué and Franco Bonollo
Metals 2025, 15(3), 229; https://doi.org/10.3390/met15030229 - 21 Feb 2025
Viewed by 948
Abstract
Aluminium thin wall castings are gaining wide acceptance in the automotive industry because of their incomparable design flexibility and higher mechanical properties. For these thin wall castings, fluidity plays a vital role in determining the quality of the final product. The aim of [...] Read more.
Aluminium thin wall castings are gaining wide acceptance in the automotive industry because of their incomparable design flexibility and higher mechanical properties. For these thin wall castings, fluidity plays a vital role in determining the quality of the final product. The aim of this work is to provide a detailed insight into the development of a multi-channel testing methodology to evaluate the fluidity of aluminium foundry alloys for thin wall applications. AlSi10MnMg foundry alloy has been used to conduct a series of experiments with the aim of designing operative protocols that achieve higher repeatability of the results. The fluidity of the investigated alloy was observed in channels of various cross-sections at three different pouring temperatures, i.e., 680, 710, and 740 °C. The obtained results show that experiments conducted following closely the designed operative protocols, result in achieving higher repeatability. It was also observed that by increasing the pouring temperature, the fluidity and repeatability of the alloy increased greatly. The 3D transient simulations were conducted by means of Altair® Inspire™ Cast 2021.2 software to study the molten metal behaviour, i.e., solidification temperature and time at the end of each strip for the studied pouring temperatures. The results further reveal that the design methodology, if executed with intrinsic accuracy and precision, will provide a reliable pathway to determine the fluidity of aluminium alloys for various industrial applications. Full article
Show Figures

Figure 1

13 pages, 13527 KiB  
Article
Influence of High-Speed Ram Transition Position on Porosity and Mechanical Properties of Large One-Piece Die-Casting Al-Si-Mn-Mg Aluminium Alloy
by Sai Zhang, Pengfei Ren, Kangle Wang, Bo Liu and Xianming Meng
Materials 2024, 17(24), 6169; https://doi.org/10.3390/ma17246169 - 17 Dec 2024
Cited by 3 | Viewed by 1048
Abstract
The high-pressure die-casting process can effectively manufacture aluminium alloy castings with complex shapes and thin wall thicknesses. However, due to the complex flow characteristics of the liquid metal during the mould-filling process, there are significant differences in the mechanical properties of different parts [...] Read more.
The high-pressure die-casting process can effectively manufacture aluminium alloy castings with complex shapes and thin wall thicknesses. However, due to the complex flow characteristics of the liquid metal during the mould-filling process, there are significant differences in the mechanical properties of different parts of the casting. This paper analyses the effect of the high-speed ram transition position on porosity and mechanical properties of Al-Si-Mn-Mg aluminium alloys in the high-pressure die-casting (HPDC) process, comparing the 1160 mm and 1200 mm positions. Using a comprehensive methodology that combines CT, tensile tests, and SEM, the research demonstrates that the 1160 mm position improves mechanical properties and reduces porosity, with a larger gap at the near-end of the casting, where the yield limit and elongation of the casting increased by 13% and 25% at 1160 mm compared to 1200 mm, respectively. This result shows that appropriate adjustment of the high-speed ram transition position can effectively optimise the organisational structure of thin-walled castings, and then improve their mechanical properties. Full article
Show Figures

Figure 1

15 pages, 8897 KiB  
Article
Thermal Conductivity of AlSi10MnMg Alloy in Relation to Casting Technology and Heat Treatment Method
by Iva Nováková, Milan Jelínek and Martin Švec
Materials 2024, 17(21), 5329; https://doi.org/10.3390/ma17215329 - 31 Oct 2024
Cited by 2 | Viewed by 1246
Abstract
Nowadays, with the development of electromobility, the requirements not only for the mechanical properties but also for the thermal conductivity of castings are increasing. This paper investigates the influence of casting and heat treatment technology on the thermal diffusivity and thermal conductivity of [...] Read more.
Nowadays, with the development of electromobility, the requirements not only for the mechanical properties but also for the thermal conductivity of castings are increasing. This paper investigates the influence of casting and heat treatment technology on the thermal diffusivity and thermal conductivity of an AlSi10MnMg alloy. The thermal diffusivity was monitored as a function of temperature in the range of 50–300 °C for the material cast by high-pressure die casting (HPDC) and also by gravity sand casting (GSC) and gravity die casting (GDC). This study also investigated the effect of the T5 heat treatment temperature (artificial ageing without prior solution treatment—HT200, HT300, and HT400) on the thermal conductivity of the material cast by different technologies. Experiments confirmed that the thermal diffusivity or thermal conductivity of the alloy depends on the casting technology. The slower the cooling rate of the casting, the higher the thermal conductivity value. For the alloy in the as-cast condition, the thermal conductivity at 50 °C is in the range of about 125 to 138 [W·m−1·K−1]. Regardless of the casting method, the thermal conductivity tends to increase with temperature (50–300 °C). Furthermore, a positive effect of heat treatment without prior solution treatment (HT200, HT300, and HT400) on the thermal conductivity was demonstrated. Regardless of the casting method of the samples, the thermal conductivity also increases with increasing heat treatment temperature. The results further showed that when artificial ageing is performed in industrial practice on castings to increase mechanical properties in the temperature range of 160–230 °C, this heat treatment has a positive effect on thermal conductivity. Full article
Show Figures

Graphical abstract

Back to TopTop