Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141,718)

Search Parameters:
Keywords = AT1G30450

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2046 KiB  
Article
Satellite-Measured Suspended Particulate Matter Flux and Freshwater Flux in the Yellow Sea and East China Sea
by Wei Shi and Menghua Wang
Remote Sens. 2025, 17(15), 2726; https://doi.org/10.3390/rs17152726 (registering DOI) - 6 Aug 2025
Abstract
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate [...] Read more.
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate the capability to characterize and quantify the surface SPM flux and freshwater flux in the Yellow Sea (YS) and East China Sea (ECS). The different routes for SPM and freshwater to transport from the coastal region to the interior ECS are identified. The seasonal and interannual SPM and freshwater fluxes from the coastal region of the ECS are further characterized and quantified. The average SPM flux reaches ~0.3–0.4 g m−2 s−1 along the route. The SPM and the freshwater fluxes in the region show different seasonality. The intensified SPM flux from the ECS coast to the offshore in winter is one order higher than the SPM flux in summer, while the offshore freshwater flux peaks in summer and weakens significantly in winter. Particularly, we found that the SPM and SSS features in the ECS changed in response to the 2020 summer Yangtze River flood event. These spatial and temporal changes for SPM and SSS in the ECS in the 2020 summer and early autumn were attributed to the anomalous surface SPM and freshwater fluxes in the same period. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
20 pages, 813 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
18 pages, 1624 KiB  
Article
Preparation of EDTA-2Na-Fe3O4-Activated Carbon Composite and Its Adsorption Performance for Typical Heavy Metals
by Yannan Lv, Shenrui Han, Wenqing Wen, Xinzhu Bai, Qiao Sun, Li Chen, Haonan Zhang, Fansong Mu and Meng Luo
Separations 2025, 12(8), 205; https://doi.org/10.3390/separations12080205 - 6 Aug 2025
Abstract
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. [...] Read more.
This study developed a new magnetic adsorbent from waste coconut shells using high-temperature carbonization, EDTA-2Na chelation, and Fe3O4 magnetic loading. Response surface methodology optimized the preparation conditions to a mass ratio of activated carbon: EDTA-2Na:Fe3O4 = 2:0.6:0.2. Characterization (SEM, XRD, FT-IR, and EDS) showed that EDTA-2Na increased the surface carboxyl and amino group density, while Fe3O4 loading (Fe concentration 6.83%) provided superior magnetic separation performance. The optimal adsorption conditions of Cu2+ by EDTA-2Na-Fe3O4-activated carbon composite material are as follows: when pH = 5.0 and the initial concentration is 180 mg/L, the equilibrium adsorption capacity reaches 174.96 mg/g, and the removal rate reaches 97.2%. The optimal adsorption conditions for Pb2+ are as follows: when pH = 6.0 and the initial concentration is 160 mg/L, the equilibrium adsorption capacity reaches 157.60 mg/g, and the removal rate reaches 98.5%. The optimal adsorption conditions for Cd2+ are pH = 8.0 and an initial concentration of 20 mg/L. The equilibrium adsorption capacity reaches 18.76 mg/g, and the removal rate reaches 93.8%. The adsorption followed the pseudo-second-order kinetics (R2 > 0.95) and Langmuir/Freundlich isotherm models, indicating chemisorption dominance. Desorption experiments using 0.1 mol/L HCl and EDTA-2Na achieved efficient desorption (>85%), and the material retained over 80% of its adsorption capacity after five cycles. This cost-effective and sustainable adsorbent offers a promising solution for heavy metal wastewater treatment. Full article
24 pages, 2697 KiB  
Article
Different Responses to Salinity of Pythium spp. Causing Root Rot on Atriplex hortensis var. rubra Grown in Hydroponics
by Emiliano Delli Compagni, Bruno Bighignoli, Piera Quattrocelli, Irene Nicolini, Marco Battellino, Alberto Pardossi and Susanna Pecchia
Agriculture 2025, 15(15), 1701; https://doi.org/10.3390/agriculture15151701 (registering DOI) - 6 Aug 2025
Abstract
Atriplex hortensis var. rubra (red orache, RO) is a halotolerant species rich in nutraceutical compounds, which makes it a valuable crop for human nutrition. This plant could also be exploited for phytoremediation of contaminated soil and wastewater, and for saline aquaponics. A root [...] Read more.
Atriplex hortensis var. rubra (red orache, RO) is a halotolerant species rich in nutraceutical compounds, which makes it a valuable crop for human nutrition. This plant could also be exploited for phytoremediation of contaminated soil and wastewater, and for saline aquaponics. A root rot disease was observed on hydroponically grown RO plants, caused by Pythium deliense and Pythium Cluster B2a sp. Identification was based on morphology, molecular analysis (ITS and COI), and phylogenetic analysis. We assessed disease severity in plants grown in a growth chamber with nutrient solutions containing different NaCl concentrations (0, 7, and 14 g L−1 NaCl). In vitro growth at different salinity levels and temperatures was also evaluated. Both Pythium species were pathogenic but showed different responses. Pythium deliense was significantly more virulent than Pythium Cluster B2a sp., causing a steady reduction in root dry weight (RDW) of 70% across all salinity levels. Pythium Cluster B2a sp. reduced RDW by 50% at 0 and 7 g L−1 NaCl while no symptoms were observed at 14 g L−1 NaCl. Pythium deliense grew best at 7 and 14 g L−1 NaCl, while Pythium Cluster B2a sp. growth was reduced at 14 g L−1 NaCl. Both pathogens had an optimum temperature of 30 °C. This is the first report of Pythium spp. causing root rot on RO grown hydroponically. The effective use of halophytic crops must consider pathogen occurrence and fitness in saline conditions. Full article
Show Figures

Figure 1

15 pages, 1920 KiB  
Article
Optimization of the Froth Flotation Process for the Enrichment of Cu and Co Concentrate from Low-Grade Copper Sulfide Ore
by Michal Marcin, Martin Sisol, Martina Laubertová, Jakub Kurty and Ema Gánovská
Materials 2025, 18(15), 3704; https://doi.org/10.3390/ma18153704 - 6 Aug 2025
Abstract
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants [...] Read more.
The increasing demand for critical raw materials such as copper and cobalt highlights the need for efficient beneficiation of low-grade ores. This study investigates a copper–cobalt sulfide ore (0.99% Cu, 0.028% Co) using froth flotation to produce high-grade concentrates. Various types of surfactants are applied in different ways, each serving an essential function such as acting as collectors, frothers, froth stabilizers, depressants, activators, pH modifiers, and more. A series of flotation tests employing different collectors (SIPX, PBX, AERO, DF 507B) and process conditions was conducted to optimize recovery and selectivity. Methyl isobutyl carbinol (MIBC) was consistently used as the foaming agent, and 700 g/L was used as the slurry density at 25 °C. Dosages of 30 and 100 g/t1 were used in all tests. Notably, adjusting the pH to ~4 using HCl significantly improved cobalt concentrate separation. The optimized flotation conditions yielded concentrates with over 15% Cu and metal recoveries exceeding 80%. Mineralogical characterization confirmed the selective enrichment of target metals in the concentrate. The results demonstrate the potential of this beneficiation approach to contribute to the European Union’s supply of critical raw materials. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

26 pages, 2328 KiB  
Review
The g-Strained EPR Line Shape of Transition-Ion Complexes and Metalloproteins: Four Decades of Misunderstanding and Its Consequences
by Wilfred R. Hagen
Molecules 2025, 30(15), 3299; https://doi.org/10.3390/molecules30153299 - 6 Aug 2025
Abstract
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of [...] Read more.
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of individual molecules as well as a notion of their physical origin. Spectral features sharpen up with decreasing temperature until the limit of constant linewidth of inhomogeneous broadening. At and below this temperature limit, each molecule has a linewidth that slightly differs from those of its congeners, and which is not related in a simple way to lifetime broadening. Choice of the model not only affects precise assignment of g-values, but also concentration determination (‘spin counting’), and therefore, calculation of stoichiometries in multi-center complexes. Forty years ago, the theoretically and experimentally well-founded statistical theory of g-strain was developed as a prime model for EPR powder patterns. In the intervening years until today, this model was universally ignored in favor of models that are incompatible with physical reality, resulting in many mistakes in EPR spectral interpretation. The purpose of this review is to outline the differences between the models, to reveal where analyses went astray, and thus to turn a very long standstill in EPR powder shape understanding into a new start towards proper methodology. Full article
Show Figures

Figure 1

18 pages, 993 KiB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

32 pages, 41105 KiB  
Article
A Novel Medical Image Encryption Algorithm Based on High-Dimensional Memristor Chaotic System with Extended Josephus-RNA Hybrid Mechanism
by Yixiao Wang, Yutong Li, Zhenghong Yu, Tianxian Zhang and Xiangliang Xu
Symmetry 2025, 17(8), 1255; https://doi.org/10.3390/sym17081255 - 6 Aug 2025
Abstract
Conventional image encryption schemes struggle to meet the high security demands of medical images due to their large data volume, strong pixel correlation, and structural redundancy. To address these challenges, we propose a grayscale medical image encryption algorithm based on a novel 5-D [...] Read more.
Conventional image encryption schemes struggle to meet the high security demands of medical images due to their large data volume, strong pixel correlation, and structural redundancy. To address these challenges, we propose a grayscale medical image encryption algorithm based on a novel 5-D memristor chaotic system. The algorithm integrates a Symmetric L-type Josephus Spiral Scrambling (SLJSS) module and a Dynamic Codon-based Multi-RNA Diffusion (DCMRD) module to enhance spatial decorrelation and diffusion complexity. Simulation results demonstrate that the proposed method achieves near-ideal entropy (e.g., 7.9992), low correlation (e.g., 0.0043), and high robustness (e.g., NPCR: 99.62%, UACI: 33.45%) with time complexity of O(11MN), confirming its effectiveness and efficiency for medical image protection. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
15 pages, 6966 KiB  
Article
A Concise Grid-Based Model Revealing the Temporal Dynamics in Indoor Infection Risk
by Pengcheng Zhao and Xiaohong Zheng
Buildings 2025, 15(15), 2786; https://doi.org/10.3390/buildings15152786 - 6 Aug 2025
Abstract
Determining the transmission routes of pathogens in indoor environments is challenging, with most studies limited to specific case analyses and pilot experiments. When pathogens are instantaneously released by a patient in an indoor environment, the peak infection risk may not occur immediately but [...] Read more.
Determining the transmission routes of pathogens in indoor environments is challenging, with most studies limited to specific case analyses and pilot experiments. When pathogens are instantaneously released by a patient in an indoor environment, the peak infection risk may not occur immediately but may instead appear at a specific moment during the pathogen’s spread. We developed a concise model to describe the temporal crest of infection risk. The model incorporates the transmission and degradation characteristics of aerosols and surface particles to predict infection risks via air and surface routes. Only four real-world outbreaks met the criteria for validating this phenomenon. Based on the available data, norovirus is likely to transmit primarily via surface touch (i.e., the fomite route). In contrast, crests of infection risk were not observed in outbreaks of respiratory diseases (e.g., SARS-CoV-2), suggesting a minimal probability of surface transmission in such cases. The new model can serve as a preliminary indicator for identifying different indoor pathogen transmission routes (e.g., food, air, or fomite). Further analyses of pathogens’ transmission routes require additional evidence. Full article
(This article belongs to the Special Issue Development of Indoor Environment Comfort)
Show Figures

Figure 1

19 pages, 1226 KiB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 - 6 Aug 2025
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
21 pages, 9310 KiB  
Article
Synergistic Regulation of Pigment Cell Precursors’ Differentiation and Migration by ednrb1a and ednrb2 in Nile Tilapia
by Zilong Wen, Jinzhi Wu, Jiawen Yao, Fugui Fang, Siyu Ju, Chenxu Wang, Xingyong Liu and Deshou Wang
Cells 2025, 14(15), 1213; https://doi.org/10.3390/cells14151213 - 6 Aug 2025
Abstract
The evolutionary loss of ednrb2 in specific vertebrate lineages, such as mammals and cypriniform fish, raises fundamental questions about its functional necessity and potential redundancy or synergy with paralogous endothelin receptors in pigment cell development. In teleosts possessing both ednrb1a and ednrb2 (e.g., [...] Read more.
The evolutionary loss of ednrb2 in specific vertebrate lineages, such as mammals and cypriniform fish, raises fundamental questions about its functional necessity and potential redundancy or synergy with paralogous endothelin receptors in pigment cell development. In teleosts possessing both ednrb1a and ednrb2 (e.g., Nile tilapia), their respective and combined roles in regulating neural crest-derived pigment cell precursors remains unresolved. Using CRISPR/Cas9, we generated single and double ednrb mutants to dissect their functions. We demonstrated that ednrb1a and ednrb2 synergistically govern the differentiation and migration of iridophore precursors. While ednrb1a is broadly essential for iridophore development, ednrb2 plays a unique and indispensable role in the colonization of iridophores in the dorsal iris. Double mutants exhibit near-complete iridophore loss; severe depletion of melanophores, xanthophores, and erythrophores; and a striking, fertile, transparent phenotype. Crucially, this iridophore deficiency does not impair systemic guanine synthesis pathways. mRNA rescue experiments confirmed mitfa as a key downstream effector within the Ednrb signaling cascade. This work resolves the synergistic regulation of pigment cell fates by Ednrb receptors and establishes a mechanism for generating transparent ermplasm. Full article
Show Figures

Figure 1

24 pages, 1604 KiB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 (registering DOI) - 6 Aug 2025
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
14 pages, 313 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
Back to TopTop