Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = ANSI Z535.4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 318
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

18 pages, 7485 KiB  
Article
Flow Pattern and Turbulent Kinetic Energy Analysis Around Tandem Piers: Insights from k-ε Modelling and Acoustic Doppler Velocimetry Measurements
by Nima Ikani, Jaan H. Pu and Saba Soori
Water 2025, 17(7), 1100; https://doi.org/10.3390/w17071100 - 7 Apr 2025
Viewed by 624
Abstract
This study investigated the distribution and dynamics of the Turbulent Kinetic Energy (TKE) around a group of three tandem piers using a combination of numerical simulations and experimental measurements. The Volume of Fluid (VOF) method, coupled with the k-ε turbulence model, [...] Read more.
This study investigated the distribution and dynamics of the Turbulent Kinetic Energy (TKE) around a group of three tandem piers using a combination of numerical simulations and experimental measurements. The Volume of Fluid (VOF) method, coupled with the k-ε turbulence model, was implemented in ANSYS FLUENT to replicate the free-surface flow conditions. An experimental validation was conducted using Acoustic Doppler Velocimetry (ADV) to assess the model’s capability at capturing the turbulence characteristics. While the model effectively reproduced the near-bed turbulence, it consistently underestimated the TKE magnitudes across the flow domain, particularly in regions of strong vortex-induced turbulence. Discrepancies emerged in the confined regions between the piers, where the velocity profiles were overestimated at the surface and underestimated near the bed and mid-depth, impacting the TKE predictions. Despite these inconsistencies, the general pattern of the TKE distribution aligned with the experimental trends, though the absolute values remained underestimated due to the inherent limitations of the k-ε model. The model’s performance in less turbulent regions demonstrated improved accuracy, reinforcing its applicability for moderate turbulence simulations. To further examine the interaction between vortex structures and the TKE, velocity distributions were analyzed at three specific depths (z/h = 0.15, 0.4, and 0.62). The findings showed the critical role of vortex shedding in TKE generation and dissipation, with notable variations in the turbulence intensity influenced by structural confinement effects. This study offers a novel, high-resolution evaluation of the k-ε model’s ability to predict TKE distributions around tandem piers, using spatially detailed comparisons with the experimental data. Unlike previous studies that broadly acknowledged the model’s limitations, this work systematically identifies the specific regions, particularly vortex-dominated zones, where its predictive accuracy significantly degrades. Full article
Show Figures

Figure 1

19 pages, 6442 KiB  
Article
Analysis of Damage Characteristics and Fragmentation Simulation of Soybean Seeds Based on the Finite-Element Method
by Yuxuan Chen, Zhong Tang, Bin Li, Shiguo Wang, Yang Liu, Weiwei Zhou, Jianpeng Jing and Xiaoying He
Agriculture 2025, 15(7), 780; https://doi.org/10.3390/agriculture15070780 - 3 Apr 2025
Viewed by 439
Abstract
Soybeans are a crucial crop, and it is therefore necessary to make accurate predictions of their mechanical properties during harvesting to optimize the design of threshing cylinders, minimize the breakage rate during threshing, and enhance the quality of the final product. However, a [...] Read more.
Soybeans are a crucial crop, and it is therefore necessary to make accurate predictions of their mechanical properties during harvesting to optimize the design of threshing cylinders, minimize the breakage rate during threshing, and enhance the quality of the final product. However, a precise model for the mechanical response of soybean seeds under stress conditions is currently lacking. To establish an accurate finite-element model (FEM) for soybeans that can predict their mechanical behavior under various loading conditions, an ellipsoidal modeling approach tailored for soybeans is proposed. Soybeans harvested in Xinjiang were collected and processed as experimental materials; the average moisture content was 11.77%, there was an average density of 1.229 g/cm³, and the average geometric specifications (height, thickness, and width) were 8.50 mm, 7.92 mm, and 7.10 mm, respectively. Compression tests were conducted on the soybeans in vertical, horizontal, and lateral orientations at the same loading speed to analyze the load and damage stages of these soybeans harvested in Xinjiang. The experimental results indicate that as the contact area decreases, the crushing load increases, with soybeans in the horizontal orientation being able to withstand the highest ultimate pressure. When placed vertically, the soybeans are not crushed; in horizontal and lateral orientations, however, they exhibit varying degrees of breakage. The Hertz formula was simplified based on the geometric characteristics of soybeans, and the elastic moduli in the X, Y, and Z directions of the soybean seeds were calculated as 42.8821 MPa, 40.4342 MPa, and 48.7659 MPa, respectively, using this simplified Hertz formula. A model of the soybeans was created in SolidWorks Ver.2019 and imported into ANSYS WORKBENCH for simulation verification. The simulation results were consistent with the experimental findings. The research findings enhance the understanding of the mechanical behavior of soybean seeds and provide robust scientific support for the optimization of soybean processing technologies and the improvement of storage and transportation efficiency. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 3667 KiB  
Article
Mechanical Behavior of SLS-Printed Parts and Their Structural Simulation
by Tamara van Roo and Conor Jörg Mager
J. Manuf. Mater. Process. 2025, 9(3), 83; https://doi.org/10.3390/jmmp9030083 - 5 Mar 2025
Viewed by 771
Abstract
This study aims to assess the mechanical tensile properties of Polyamide produced via selective laser sintering (SLS). The research focuses on the effects of post-processing, positional dependency, anisotropy, and the repeatability of SLS print jobs on material properties. Understanding this anisotropy is crucial [...] Read more.
This study aims to assess the mechanical tensile properties of Polyamide produced via selective laser sintering (SLS). The research focuses on the effects of post-processing, positional dependency, anisotropy, and the repeatability of SLS print jobs on material properties. Understanding this anisotropy is crucial for reliable component simulation. A design-appropriate simulation method is developed. A total of 27 identical specimens were fabricated in various orientations and positions within the build chamber, repeated across three print jobs, alongside standard specimens for different post-processing treatments and tempering durations. The mechanical tensile properties were evaluated through tensile tests and compared with simulation outcomes. A new material modeling concept was formulated in the finite element (FE) program ANSYS, employing an orthotropic approach based on linear elastic initial deformation. The Hill Yield Criterion was utilized to model the transition to the plastic region, characterized by a nonlinear strain hardening curve. The print direction was integrated into the FE simulation mesh via a local material coordinate system. Surface treatment via glass bead blasting resulted in slight increases in mechanical response, while tempering had a minor influence. Significant anisotropy was observed, with only the z-position in the build chamber affecting mechanical properties. Successful mapping of anisotropy in structural simulations was achieved. This research did not address optimization of the printing process, recyclate effects, powder aging, or fatigue. The findings provide a comprehensive analysis of the mechanical behavior of SLS-printed specimens, serving as a foundation for treatment methodologies and simulation strategy development. Full article
Show Figures

Figure 1

33 pages, 23106 KiB  
Article
Determination of Mechanical Properties of Blind Rivet Joints Using Numerical Simulations and Experimental Testing
by Martin Beber, Martin Stejskal and Frantisek Sedlacek
Materials 2025, 18(2), 229; https://doi.org/10.3390/ma18020229 - 7 Jan 2025
Cited by 3 | Viewed by 1225
Abstract
This study explores the tensile performance of blind rivet joints in galvanized steel sheets, focusing on their behavior under shear and normal load conditions. Blind rivets are frequently used in structural applications due to their ease of installation and ability to be applied [...] Read more.
This study explores the tensile performance of blind rivet joints in galvanized steel sheets, focusing on their behavior under shear and normal load conditions. Blind rivets are frequently used in structural applications due to their ease of installation and ability to be applied from one side, making them highly effective in industries like aerospace and automotive. Two types of DIN 7337—4.8 × 8 blind rivets—galvanized steel St/St and stainless steel A2/A2—paired with galvanized steel sheets DX51D + Z275, were experimentally tested to assess how their material properties affect their joint strength, deformation patterns, and failure modes. Single-lap shear, double-lap shear, and pure normal load tests were conducted in multiple configurations to evaluate joint performance under varying loading conditions, simulating real-world stresses. Using custom-built equipment, controlled forces were applied perpendicular to the rivet joints to replicate practical loading conditions. The results revealed distinct differences in the load-bearing capacities of the two materials, offering valuable insights for applications where corrosion resistance and structural integrity are critical. Finite element analysis (FEA) was then used to simulate the behavior of the joints, with the results validated against experimental data. To enhance the reliability of numerical simulations in optimizing the design of rivet joints, a methodology was proposed to calibrate non-linear FEA models to experimental results, and a substantial agreement of 92.53% was achieved via optimization in ANSYS OptiSLang. This research contributes to our broader understanding of riveted connections, providing practical recommendations for assessing the performance of such joints in various engineering fields. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 5533 KiB  
Article
Numerical Study on the Hydrodynamics of Manta Rays Exiting Water
by Dong-Hui Zhou, Min-Hui Zhang, Xiao-Yang Wu, Yu Pei, Xue-Jing Liu, Cheng Xing, Yong Cao, Yong-Hui Cao and Guang Pan
J. Mar. Sci. Eng. 2024, 12(12), 2125; https://doi.org/10.3390/jmse12122125 - 21 Nov 2024
Cited by 1 | Viewed by 1189
Abstract
Observation of manta rays exiting water has been rarely reported, as there are various difficulties in observing and obtaining data on their behavior in a marine environment. Therefore, the movement mechanism of manta rays exiting water is still unclear. This paper proposes the [...] Read more.
Observation of manta rays exiting water has been rarely reported, as there are various difficulties in observing and obtaining data on their behavior in a marine environment. Therefore, the movement mechanism of manta rays exiting water is still unclear. This paper proposes the idea of using CFD (based on Ansys Fluent, version 2022) to simulate the water-exit process of the manta ray. The study discusses the changes in the mechanical and kinematic parameters of the manta ray over time and obtains the evolution of vortex structures during the underwater movement phase of the manta ray. Time history variations of the mechanical and kinematics parameters in the vertical water-exit motion are discussed. The evolution of vortex structures during the underwater movement of the manta ray is obtained. The direction in which the manta ray approaches the free surface is the X-direction and the direction of its flapping motion is the Z-direction. VX and VZ are the velocities of the manta ray in the X- and Z-directions, respectively. FX and FZ represent the forces acting on the manta ray in the X- and Z-directions, respectively. The results indicate that the vertical water-exit of the manta ray mainly undergoes three stages: underwater acceleration, crossing the free surface, and aerial movement. During the underwater acceleration phase, the force FX of the manta ray fluctuates, but its average value is positive within one cycle. VX also shows a stepwise increase, while FZ and VZ exhibit periodic changes. During the stage of crossing the free liquid surface, FX first increases and then sharply decreases, VX also shows an increase and then decrease, FZ fluctuates greatly, producing a peak, and the swimming speed VZ of the manta ray is negative. During the aerial motion phase, FX is mainly affected by gravity, VX decreases linearly, FZ approaches 0, and VZ remains constant. During the process of swimming underwater, the tail vortex of the manta ray presents a double row staggered structure to generate thrust. Increasing the flapping frequency and decreasing the wave number can improve the swimming speed of the manta ray, and then increase its water-exit height. The findings may provide an important hydrodynamics basis for biomimetic trans-media vehicle designs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 8854 KiB  
Article
Study on Comprehensive Performance of Four-Point Contact Ball Slewing Bearings Based on a Bearing Support Bolt-Integrated Model
by Zhanshu He, Zhenpeng Shi, Dongchen Qin, Jingbo Wen, Jinggan Shao, Xianghui Liu and Xinghui Xie
Machines 2024, 12(11), 814; https://doi.org/10.3390/machines12110814 - 15 Nov 2024
Cited by 2 | Viewed by 1038
Abstract
To investigate four-point contact ball slewing bearings, a bearing support bolt-integrated model was created with HyperMesh and ANSYS software, and its accuracy was theoretically confirmed. This study examines how the rolling element number Z, contact angle α, bolt number N, [...] Read more.
To investigate four-point contact ball slewing bearings, a bearing support bolt-integrated model was created with HyperMesh and ANSYS software, and its accuracy was theoretically confirmed. This study examines how the rolling element number Z, contact angle α, bolt number N, bolt pre-tightening force coefficient P, and radial load-overturning moment angle θ affect the comprehensive performance of four-point contact ball slewing bearings and connecting bolts. The study found that increasing Z, α, N, P, and θ reduces overall bearing, ring, rolling element, and contact load deformations. The maximum deformation and stress of bolts rise with P but decrease with Z, α, N, and θ. The degree of influence of each parameter on the deformation of the inner and outer rings, the deformation of the rolling element, and the contact load of the rolling body from large to small is ranked as follows: α, N, Z, θ, and P; the degree of influence on bolt deformation and bolt stress distribution uniformity from large to small is ranked as follows: N, α, Z, θ, and P; the degree of influence on the overall deformation of the bearing from large to small is ranked as follows: N, θ, α, Z and P; the degree of impact on the maximum stress of the bolt from large to small is ranked as follows: P, N, Z, α, θ. To improve the overall performance of a four-point contact ball slewing bearing, increase α, N, Z, and θ. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 2627 KiB  
Article
Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing
by Youfu Chen, Yaou Wang, Bo Chen, Hongda Zhu and Lingling Zhao
Energies 2024, 17(18), 4618; https://doi.org/10.3390/en17184618 - 14 Sep 2024
Cited by 1 | Viewed by 1056
Abstract
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas [...] Read more.
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas side of the air preheater, considering the influences of steam soot blowing, is established using the Gambit 2.4.6 software. Based on the SIMPLE algorithm, the velocity field and the temperature field in the air preheater under varied working conditions are simulated using the software of Ansys Fluent 2021R1, and the influences of the boiler load, the operation parameters of the steam soot blower, and the running and outage of the soot blower on the flue gas velocity distribution in the depth direction of the corrugated plates, the soot-blowing coverage area, the inlet flue gas velocity, and the inlet flue gas temperature of the corrugated plates are analyzed. Under the base working condition, the flue gas velocity on the axis of the steam nozzle first decreases rapidly with increasing the corrugated plate depth (Z < 1.0 m), and then it decreases slowly with an almost equal slope. The longitudinal flue gas velocity has a positive correlation with the boiler load. The longitudinal flue gas velocity obviously decreases when the boiler load is decreased, and its reduction increases as the corrugated plate depth increases. It is one reason that the ash deposition is prone to occur on the cold end surface of corrugated plates under the condition of low boiler load. The longitudinal flue gas velocity increases with the soot-blowing steam velocity increasing when the corrugated plate depth is less than 1.5 m, but after that, it is almost not affected by the change in soot-blowing steam velocity. The soot-blowing coverage area has a negative correlation with the boiler load but a slight positive correlation with the steam velocity of the soot blower on the whole. The inlet flue gas velocity of the corrugated plates has a positive correlation with the boiler load and the inlet steam velocity of the soot blower. The average inlet flue gas velocity decreases by 21.7% when the boiler load is reduced by 50%. For every 5 m/s variation in the inlet steam velocity, the inlet flue gas velocity changes by about 10–14% whether the steam soot blower is put into operation or not, which has an obvious effect on the inlet gas velocity of the corrugated plates. The inlet flue gas temperature of the corrugated plates is, respectively, positively correlated with the boiler load and the inlet steam temperature of the soot blower. When the boiler load is reduced from 100% BMCR to 50% BMCR, the average inlet flue gas temperature of the corrugated plates is reduced by 44.2 K; however, when the soot-blowing steam temperature varies by 20 K, the average inlet flue gas temperature of the corrugated plates varies by only about 1.8 K. It means that it is difficult to enhance the cold end flue gas temperature of the corrugated plates only by raising the soot-blowing steam temperature at low boiler load. Adding a soot blower using high-temperature steam or hot air at the outlet of the corrugated plates may be an option to solve the ash deposition of the corrugated plates. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

29 pages, 9744 KiB  
Article
A Novel Method for Estimating the Thermal Performance of Multi-Block Wall Systems Using Thermal Impedance Z-Value under Transient Uncontrolled Heat Transfer Conditions
by Payal Ashish Modi, Bu Kwan Kee, Abdelgadir Mohamed Mahmoud and Yousif Abdalla Abakr
Buildings 2024, 14(9), 2833; https://doi.org/10.3390/buildings14092833 - 9 Sep 2024
Viewed by 1062
Abstract
Climate change is one of the biggest challenges today. An increasing population accelerates the construction of concrete houses and the use of air conditioners, thereby leading to an increase in energy consumption. When the walls of buildings are well-designed and insulated, energy consumption [...] Read more.
Climate change is one of the biggest challenges today. An increasing population accelerates the construction of concrete houses and the use of air conditioners, thereby leading to an increase in energy consumption. When the walls of buildings are well-designed and insulated, energy consumption can be reduced. Therefore, it is important to measure the thermal performance of wall systems accurately. The existing traditional methods of measuring R- and U-values provide acceptable solutions for steady-state controlled, uncontrolled or transient state-controlled conditions. However, a need to develop a novel approach for transient state-uncontrolled realistic conditions has been identified. The present study involves both experimental and numerical investigations. An in situ model room with dimensions of 1.60 m × 1.73 m × 1.50 m was built for the experimental work, and a series of experiments were conducted. For numerical work, two models using Ansys Fluent 2021/2022 and MATLAB Simulink 2021/2022 were developed. The real-time experimental data were fed into numerical models to predict the thermal behavior of the wall system. The results include the evaluation of a concept called ‘Time-Lag’ for all three models. ‘Time-Lag’ is the time taken for the heat energy to flow across the wall system. The Time-Lag for the experimental model was 8 h 45 min, while for MATLAB and Ansys models, it was 8 h 22 min. (average) and 7 h 30 min, respectively. Minor variations validate the accuracy of the numerical models. Further, a novel method using a new parameter in building systems called ‘thermal impedance Z-value’ was developed to estimate the real-time thermal performance of walls using MATLAB Simulink. The Z-value measures the ability of a wall system to resist the flow of heat (thermal resistance, R-value) combined with its ability to store heat energy (thermal capacitance, Cth-value). It is evaluated for steady-state and dynamic (transient) systems. For the steady-state system, the Z-values on the outer and inner walls were 18.2683 K/W and 18.6761 K/W, respectively with a minor difference of 0.4078 K/W at the end of 72 h. For the dynamic system, the Z-value did not reach a constant value and fluctuated in a particular pattern during 24 h of the solar cycle with average values of 3.2969 K/W on the outer and 1.2886 K/W on the inner walls at the end of 72 h, thus presenting more accurate and realistic thermal performance results of a wall system. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 9752 KiB  
Article
Numerical Simulation of Fluid Flow Characteristics and Heat Transfer Performance in Graphene Foam Composite
by Jinpeng Bi, Rongyao Zhou, Yuexia Lv, Tingting Du, Juan Ge and Hongyang Zhou
Coatings 2024, 14(8), 1046; https://doi.org/10.3390/coatings14081046 - 16 Aug 2024
Cited by 1 | Viewed by 1141
Abstract
Graphene foam composite is a promising candidate for advanced thermal management applications due to its excellent mechanical strength, high thermal conductivity, ultra-high porosity and huge specific surface area. In this study, a three-dimensional physical model was developed in accordance with the dodecahedral structure [...] Read more.
Graphene foam composite is a promising candidate for advanced thermal management applications due to its excellent mechanical strength, high thermal conductivity, ultra-high porosity and huge specific surface area. In this study, a three-dimensional physical model was developed in accordance with the dodecahedral structure of graphene foam composite. A comprehensive numerical simulation was carried out to investigate the fluid flow and convective heat transfer in open-cell graphene foam composite by using ANSYS Fluent 2021 R1 commercial software. Research results show that, as porosity increases, the pressure gradient for graphene foam composite with circular and triangular cross-section struts is reduced by 65% and by 77%, respectively. At a given porosity of 0.904, when the inlet velocity increases from 1 m/s to 5 m/s, the pressure gradient is increased by 11.3 times and 13.8 times, and the convective heat transfer coefficient is increased by 54.5% and 43% for graphene foam composite with circular and triangular cross-section struts, respectively. Due to the irregularity of the skeleton distribution, the pressure drop in Y direction is the highest among the three directions, which is 8.7% and 17.4% higher than that in the Z and X directions at the inlet velocity of 5 m/s, respectively. The convective heat transfer coefficient in the Y direction is significantly lower than that along the X and Z directions. Furthermore, triangular cross-section struts induce a greater pressure drop but offer less effective heat transfer compared to circular struts. The research findings may provide critical insights into the design and optimization of graphene foam composites, and promote their potential for efficient thermal management and gas/liquid purification in engineering applications. Full article
Show Figures

Figure 1

24 pages, 10507 KiB  
Article
Dynamic Analysis of Crane Vessel and Floating Wind Turbine during Temporary Berthing for Offshore On-Site Maintenance Operations
by Jinkun Shi, Mingfeng Hu, Yifan Zhang, Xiaodong Chen, Sheng Yang, Thiago S. Hallak and Mingsheng Chen
J. Mar. Sci. Eng. 2024, 12(8), 1393; https://doi.org/10.3390/jmse12081393 - 14 Aug 2024
Cited by 7 | Viewed by 2302
Abstract
With the increased scale and deployment of floating wind turbines in deep sea environments, jack-up installation vessels are unable to conduct maintenance operations due to limitations in water depth. This has led to the recognition of the advantages of floating cranes in offshore [...] Read more.
With the increased scale and deployment of floating wind turbines in deep sea environments, jack-up installation vessels are unable to conduct maintenance operations due to limitations in water depth. This has led to the recognition of the advantages of floating cranes in offshore maintenance activities. However, the dynamic coupling between the crane and the floating wind turbine under wave and wind action can result in complex responses, which also relate to complex mooring configurations. The ability to maintain stability during maintenance operations has become a primary concern. In order to address this issue, a method of connecting a floating crane with a floating wind turbine is proposed, simulating the berthing of a floating offshore wind turbine (FOWT) to a crane. Thus, a systematic comparison was conducted with frequency- and time-domain simulation using ANSYS-AQWA software. The simulation results demonstrated the feasibility and dynamic efficiency of this novel berthing approach. Connecting the crane vessel to a floating wind turbine significantly reduced the crane tip movement. Simulations showed that the crane tip movement in the X-, Y-, and Z-directions was reduced by over 30%, which implies that it may be feasible to conduct offshore on-site maintenance operations for the FOWT by using floating crane vessels if the two bodies were properly constrained. Full article
(This article belongs to the Special Issue Innovative Development of Offshore Wind Technology)
Show Figures

Figure 1

15 pages, 6012 KiB  
Article
Numerical and Experimental Modal Analysis of a Gyroid Inconel 718 Structure for Stiffness Specification in the Design of Load-Bearing Components
by Katarina Monkova, Sanjin Braut, Peter Pavol Monka, Ante Skoblar and Martin Pollák
Materials 2024, 17(14), 3595; https://doi.org/10.3390/ma17143595 - 21 Jul 2024
Viewed by 1296
Abstract
The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for [...] Read more.
The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for numerical analysis was created using the Python application ScaffoldStructures. FE analysis was performed using ANSYS 2024 R1 software. Free boundary conditions were used in experimental modal analysis to ensure feasibility. The analysis identified the first four natural frequencies ranging from 10 to 16 kHz. The results revealed that the first natural frequency corresponds to the first torsional frequency about the Z axis, the second to the first flexural mode in the XZ plane, the third to the first bending mode in the YZ plane, and the fourth to the first torsional mode about the X axis. Small differences between the results of numerical and experimental modal analysis can be attributed to geometric errors in the manufactured sample, careless removal from the platform, and due to reduction in the complexity of the numerical FE model. Employing modal analysis of a component, the stiffness of a lightweight component can be revealed. In the case of the sample with the cellular structure of gyroid type, relatively high stiffness regarding the material savings was identified, which can be advantageously used in many applications. Full article
(This article belongs to the Special Issue Preparation and Application of Regularly Structured Porous Materials)
Show Figures

Figure 1

17 pages, 14700 KiB  
Article
Design of a Novel Three-Degree-of-Freedom Piezoelectric-Driven Micro-Positioning Platform with Compact Structure
by Chuan Zhao, Zhenlong Li, Fangchao Xu, Hongkui Zhang, Feng Sun, Junjie Jin, Xiaoyou Zhang and Lijian Yang
Actuators 2024, 13(7), 248; https://doi.org/10.3390/act13070248 - 28 Jun 2024
Cited by 4 | Viewed by 1614
Abstract
In this paper, a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform based on a lever combination compound bridge-type displacement amplification mechanism is proposed. The micro-positioning platform proposed in this paper aims to solve the current problem of the large size and small travel of the [...] Read more.
In this paper, a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform based on a lever combination compound bridge-type displacement amplification mechanism is proposed. The micro-positioning platform proposed in this paper aims to solve the current problem of the large size and small travel of the three-degree-of-freedom piezoelectric-driven micro-positioning platform. In this paper, a lever combination compound bridge-type displacement amplification mechanism combined with a new biaxial flexible hinge is proposed, the structural dimensions of the lever mechanism and the compound bridge mechanism are optimized, and the amplification multiplier is determined. The maximum output simulation analysis of the micro-positioning platform is carried out by using ANSYS, and the experimental test system is built for verification. The validation results show that the maximum errors between simulation and experiment in the z-direction, rotation direction around x, and rotation direction around y are 64 μm, 0.016°, and 0.038°, respectively, and the corresponding maximum relative errors are 5.6%, 2.4%, and 6.6%, respectively, which proves the feasibility of the theoretical design. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

18 pages, 1296 KiB  
Article
Exploring Perception of Warning Labels: Insights from Color, Signal Words, and Symbol Evaluation
by Miskeen Ali Gopang, Tauha Hussain Ali and Shakeel Ahmed Shaikh
Safety 2024, 10(2), 52; https://doi.org/10.3390/safety10020052 - 14 Jun 2024
Viewed by 2009
Abstract
Protecting people from the risks associated with products is a critical concern in today’s economy. Pakistan, being the world’s fifth most populous country, lacks the framework of warning labels and therefore faces a significant gap in product warning labels. Pakistan is a representative [...] Read more.
Protecting people from the risks associated with products is a critical concern in today’s economy. Pakistan, being the world’s fifth most populous country, lacks the framework of warning labels and therefore faces a significant gap in product warning labels. Pakistan is a representative of a number of countries that export a variety of products to Pakistan; however, warning labels on these goods are typically in English, which might mislead people of Pakistan in perceiving the hazard level. It is therefore imperative to conduct research into the non-textual and cross-cultural understanding of labels from the perspective of Pakistan. This study examined the applicability of ANSI Z535.4 in the context of Pakistan. A total of 66 (34 male and 32 female) undergraduate students with a mean age of 20.5 participated in this study. A meticulous experiment was designed using a nine-point rating scale with anchors on both sides, where one represented ‘not at all hazardous’ and nine represented ‘extremely hazardous’. Participants rated each component of warning labels, i.e., color, symbol, signal words, and their complex configurations. The results showed alignment with the ANSI Z535.4 standards for some components (i.e., colors, symbols, and signal words) and complex configurations, whereas no significant difference was found in perceived hazard levels between green (M = 3.167), blue (M = 3.591, and yellow (M = 3.652) colors, with a p-value greater than 0.05. Participants did not differentiate significantly between signal words, i.e., caution (M = 5.182) and warning (M = 5.879). Participants also did not differentiate significantly between complex configurations, i.e., safety alert–caution–yellow (M = 5.076) and safety alert–warning–orange (M = 5.197), with p-values greater than 0.05. These results state that discrepancies in the perception of warning labels exist. This study is the first of its kind conducted in the context of Pakistan, which will help policy makers to consider the findings before implementing a policy. In fact, differences in perception could result in failure to take appropriate precautions. Nonetheless, these nuances can be overcome with proper awareness through training for the people. Full article
(This article belongs to the Special Issue Environmental Risk Assessment—Health and Safety)
Show Figures

Figure 1

13 pages, 5223 KiB  
Article
A UDF-Based Approach for the Dynamic Stall Evaluation of Airfoils for Micro-Air Vehicles
by Diana-Andreea Sterpu, Daniel Măriuța and Lucian-Teodor Grigorie
Biomimetics 2024, 9(6), 339; https://doi.org/10.3390/biomimetics9060339 - 4 Jun 2024
Viewed by 1506
Abstract
A numerical method for generating dynamic stall using ANSYS Fluent and a user-defined function (UDF), with the complete script shared for reference, is introduced and tested. The study draws inspiration from bird flight, exploring dynamic stall as a method for achieving enhanced aerodynamic [...] Read more.
A numerical method for generating dynamic stall using ANSYS Fluent and a user-defined function (UDF), with the complete script shared for reference, is introduced and tested. The study draws inspiration from bird flight, exploring dynamic stall as a method for achieving enhanced aerodynamic performance. The numerical method was tested on NACA 0012 airfoils with corresponding chord lengths of c1=40 mm, c2=150 mm, and c3=300 mm at Reynolds numbers ranging from Re1=2.8×104 up to Re5=1.04×106. Airfoil oscillations were settled for all cases at ω=0.55 Hz. Detached eddy simulation (DES) is employed as the turbulence model for the simulations presented, ensuring the accurate representation of the flow characteristics and dynamic stall phenomena. The study provides a detailed methodology, encouraging further exploration by researchers, especially young academics and students. Full article
Show Figures

Figure 1

Back to TopTop