Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,081)

Search Parameters:
Keywords = ABC transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 159
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

16 pages, 2503 KiB  
Article
rs2231142 (421 C>A, Q141K) Is More Functionally Influential than rs2231137 (34 G>A, V12M) on Anticancer Drug Resistance Mediated by the ABCG2 Haplotype In Vitro
by Miho Yamashita, Megumi Tsukamoto, Ritsuko Imai, Himari Muramatsu and Hiroshi Nakagawa
Int. J. Mol. Sci. 2025, 26(15), 7428; https://doi.org/10.3390/ijms26157428 - 1 Aug 2025
Viewed by 107
Abstract
The ATP-binding cassette transporter ABCG2 plays a critical role in drug pharmacokinetics and multidrug resistance in cancer therapy. Two common nonsynonymous polymorphisms, rs2231137 (V12M) and rs2231142 (Q141K), are associated with altered ABCG2 function, drug response, and disease susceptibility. However, the functional impact of [...] Read more.
The ATP-binding cassette transporter ABCG2 plays a critical role in drug pharmacokinetics and multidrug resistance in cancer therapy. Two common nonsynonymous polymorphisms, rs2231137 (V12M) and rs2231142 (Q141K), are associated with altered ABCG2 function, drug response, and disease susceptibility. However, the functional impact of their haplotype remains poorly understood. In this study, we established Flp-In™-293 cell lines stably expressing ABCG2 (12M/141K) and systematically compared their expression and drug resistance profiles with those of cells expressing ABCG2 (12V/141Q) (WT), ABCG2 (12M/141Q), and ABCG2 (12V/141K). The mRNA of ABCG2 (12M/141K) was expressed at levels comparable to those of the other variants in cells. Cells expressing ABCG2 (12M/141K) exhibited significantly higher resistance to mitoxantrone (10.7-fold) and SN-38 (5.99-fold) than the mock cells. While ABCG2 (12M/141Q) conferred the highest resistance among the tested variants, the ABCG2 (12M/141K) haplotype showed a trend toward higher mitoxantrone resistance than the ABCG2 (12V/141Q) (WT) (p = 0.066), suggesting a haplotype-specific effect. These findings provide novel insights into haplotype-based modulation of ABCG2 function and its contribution to multidrug resistance, with potential implications for optimizing personalized chemotherapy strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 151
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 313
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

24 pages, 8636 KiB  
Article
Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm
by Jin Xu, Bo Xu, Xiaoguang Mou, Boxi Yao, Zekun Guo, Xiang Wang, Yuanyuan Huang, Sihan Qian, Min Cheng, Peng Liu and Jianning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1453; https://doi.org/10.3390/jmse13081453 - 29 Jul 2025
Viewed by 173
Abstract
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil [...] Read more.
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil spills. Catastrophic impacts have been exerted on the marine environment by these accidents, posing a serious threat to economic development and ecological security. Therefore, there is an urgent need for efficient and reliable methods to detect oil spills in a timely manner and minimize potential losses as much as possible. In response to this challenge, a marine radar oil film segmentation method based on feature fusion and the artificial bee colony (ABC) algorithm is proposed in this study. Initially, the raw experimental data are preprocessed to obtain denoised radar images. Subsequently, grayscale adjustment and local contrast enhancement operations are carried out on the denoised images. Next, the gray level co-occurrence matrix (GLCM) features and Tamura features are extracted from the locally contrast-enhanced images. Then, the generalized least squares (GLS) method is employed to fuse the extracted texture features, yielding a new feature fusion map. Afterwards, the optimal processing threshold is determined to obtain effective wave regions by using the bimodal graph direct method. Finally, the ABC algorithm is utilized to segment the oil films. This method can provide data support for oil spill detection in marine radar images. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 4581 KiB  
Article
Co-Culture with Two Soil Fungal Strains Enhances Growth and Secondary Metabolite Biosynthesis in Cordyceps takaomontana
by Junyi Chen, Minghao Ding, Donglan He, Dengxian Zhang, Ming Wang, Yulan Xiang and Tianya Liu
J. Fungi 2025, 11(8), 559; https://doi.org/10.3390/jof11080559 - 29 Jul 2025
Viewed by 352
Abstract
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. [...] Read more.
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. paeoniae and B. minispora significantly promoted synnematal growth and enhanced antioxidant enzyme activities. Total triterpenoid content increased substantially. F. paeoniae markedly elevated levels of ergosterol peroxide, whereas B. minispora boosted accumulation of L-arabinose, ergotamine, and euphol. Metabolomics revealed that both fungi activated key metabolic pathways (including ABC transporters, mineral absorption, and protein digestion/absorption). F. paeoniae uniquely upregulated phenylalanine metabolism. This work elucidates the metabolic mechanisms underlying growth promotion of C. takaomontana mediated by F. paeoniae and B. minispora as well as deciphers potential pharmacologically active metabolites. These findings provide a foundation for strategically improving artificial cultivation and developing functional microbial inoculants. Full article
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 343
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

28 pages, 3757 KiB  
Article
Growth Hormone Signaling in Bladder Cancer: Transcriptomic Profiling of Patient Samples and In Vitro Evidence of Therapy Resistance via ABC Transporters and EMT Activation
by Emily Davis, Lydia J. Caggiano, Hannah Munholland, Reetobrata Basu, Darlene E. Berryman and John J. Kopchick
Int. J. Mol. Sci. 2025, 26(15), 7113; https://doi.org/10.3390/ijms26157113 - 23 Jul 2025
Viewed by 486
Abstract
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and [...] Read more.
Growth hormone (GH) signaling has been implicated in tumor progression and therapy resistance across multiple cancer types, yet its role in bladder cancer remains largely unexplored. In this study, we investigated the impact of GH and its receptor (GHR) on therapy resistance and disease progression in urothelial carcinoma (UC) through integrated transcriptomic and in vitro analyses. Transcriptomic profiling of The Cancer Genome Atlas bladder cancer cohort revealed that high tumoral GHR expression was associated with differential upregulation of genes involved in drug efflux, epithelial-to-mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling. Notably, elevated GHR levels correlated with significantly reduced overall survival in patients with UC. In parallel, in vitro experiments demonstrated that GH promotes chemoresistance in UC cell lines via upregulation of ATP-binding cassette-containing (ABC) transporters and activation of EMT. GH also modulated ECM-remodeling-associated genes in a chemotherapy-dependent manner, including matrix metalloproteinases and tissue inhibitors of metalloproteinases. Importantly, these effects were abrogated by Pegvisomant, a GHR antagonist, indicating the functional relevance of GH/GHR signaling in the mediation of these phenotypes. Collectively, our findings support a mechanistic role for GH signaling in driving therapy resistance and tumor aggressiveness in bladder cancer and suggest GHR antagonism as a potential therapeutic strategy to improve treatment outcomes. Full article
(This article belongs to the Special Issue Urologic Cancers: Molecular Basis for Novel Therapeutic Approaches)
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
Allosteric Inhibition of P-Glycoprotein-Mediated Efflux by DMH1
by Zhijun Wang, Chen Xie, Maggie Chou and Jijun Hao
Biomedicines 2025, 13(8), 1798; https://doi.org/10.3390/biomedicines13081798 - 23 Jul 2025
Viewed by 273
Abstract
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors [...] Read more.
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors remain elusive due to toxicity, poor specificity, and limited efficacy. This study investigates DMH1, a selective type I BMP receptor inhibitor, as a novel P-gp inhibitor. Methods: DMH1 cytotoxicity was assessed in P-gp-overexpressing (PC3-TxR, K562/Dox) and P-gp-deficient (PC3) cell lines using MTT assays. P-gp inhibition was evaluated using calcein AM retention and daunorubicin (DNR) accumulation assays. Kinetic analysis determined DMH1’s effect on P-gp-mediated transport (Vmax and Km). ATPase activity assays were performed to assess DMH1’s impact on ATP hydrolysis. Preliminary molecular docking (CB-Dock2) was used to predict DMH1’s binding site on the human P-gp structure (PDB ID: 6QEX). Results: DMH1 showed no cytotoxicity in P-gp-overexpressing or deficient cells. It significantly enhanced intracellular accumulation of Calcein AM and DNR, indicating effective inhibition of P-gp function. Kinetic data revealed that DMH1 reduced Vmax without affecting Km, consistent with noncompetitive, allosteric inhibition. DMH1 also inhibited ATPase activity in a dose-dependent manner. Docking analysis suggested DMH1 may bind to an allosteric site in the transmembrane domain, potentially stabilizing the inward-facing conformation. Conclusions: DMH1 is a promising noncompetitive, allosteric P-gp inhibitor that enhances intracellular drug retention without cytotoxicity, supporting its potential as a lead compound to overcome multidrug resistance and improve chemotherapeutic efficacy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

23 pages, 14728 KiB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 354
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 985 KiB  
Review
Advances in Forensic Entomotoxicology for Decomposed Corpses: A Review
by Sen Hou, Zengjia Liu, Jiali Su, Zeyu Yang, Zhongjiang Wang, Xinyi Yao, Zhou Lyu, Yang Xia, Shuguang Zhang, Wen Cui, Yequan Wang and Lipin Ren
Insects 2025, 16(7), 744; https://doi.org/10.3390/insects16070744 - 21 Jul 2025
Viewed by 447
Abstract
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting [...] Read more.
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting the accuracy of postmortem interval (PMI) estimation. This review systematically summarizes the effects of various xenobiotics, including pesticides, illicit drugs, sedatives, heavy metals, and antibiotics on larval growth, physiological traits, and gut microbial composition in forensically relevant flies. However, most studies to date have relied primarily on phenotypic observations, with limited insight into underlying molecular mechanisms. Significant interspecies and dose-dependent variability also exists in the absorption, metabolism, and physiological responses to xenobiotics. We highlight recent advances in multi-omics technologies that facilitate the identification of molecular biomarkers associated with xenobiotic exposure, particularly within the insect detoxification system. Key components such as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and ATP-binding cassette (ABC) transporters play essential roles in xenobiotic metabolism and insecticide resistance. Additionally, the insect fat body serves as a central hub for detoxification, hormonal regulation, and energy metabolism. It integrates signals related to xenobiotic exposure and modulates larval development, making it a promising model for future mechanistic studies in insect toxicology. Altogether, this review offers a comprehensive and reliable framework for understanding the complex interactions between toxic substance exposure, insect ecology, and decomposition in forensic investigations. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

17 pages, 3334 KiB  
Article
Alterations in P-glycoprotein Expression in the Placenta of Obese Rats and Humans
by Péter Szatmári, Kata Kira Kemény, Andrea Surányi, Yakov Rachamim and Eszter Ducza
Int. J. Mol. Sci. 2025, 26(14), 6976; https://doi.org/10.3390/ijms26146976 - 20 Jul 2025
Viewed by 267
Abstract
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact [...] Read more.
Obesity affects approximately 30% of pregnancies worldwide and is one of the leading metabolic disorders among pregnant women. Maternal obesity is often associated with placental dysfunction and structural alterations, which increase the risk of developing complications. Efflux transporters, including P-glycoprotein (P-gp), may impact placental function and fetal development. Consequently, our research examined the effects of obesity on P-glycoprotein expression in both a rat model and human placental tissue. P-gp expression was measured by RT-PCR and Western blot techniques in human and rat placental tissues. Moreover, we further characterized the high-fat and high-sugar diet (HFHSD)-induced gestational obesity rat model by measuring tissue weights. Significant decreases were observed in fetal, placental, and uterus weights in the obese animals near the end of pregnancy. In obese rats, mRNA and protein expression of placental P-gp showed a reduction on gestation days 15, 20, and 22. A similar P-gp reduction was observed in the term placenta in obese women in mRNA and protein levels. We hypothesize that the reduced expression of P-gp may heighten the susceptibility of both the fetus and placenta to P-gp substrates. This alteration could potentially result in an increased risk of pregnancy complications and obesity-related drug contraindications linked to P-gp transport during pregnancy. Full article
Show Figures

Figure 1

18 pages, 4535 KiB  
Article
Selenium Alleviates Low-Temperature Stress in Rice by Regulating Metabolic Networks and Functional Genes
by Naixin Liu, Qingtao Yu, Baicui Chen, Chengxin Li, Fanshan Bu, Jingrui Li, Xianlong Peng and Yuncai Lu
Agriculture 2025, 15(14), 1489; https://doi.org/10.3390/agriculture15141489 - 11 Jul 2025
Viewed by 295
Abstract
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh [...] Read more.
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh weight, plant height, and chlorophyll content by 36.9%, 24.3%, and 8.4%, respectively, while reducing malondialdehyde (MDA) content by 29.1%. Se treatment also increased the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), by 25.2%, 42.7%, and 33.3%, respectively, and upregulated flavonoids, soluble sugars, cysteine (Cys), glutathione (GSH), and oxidized glutathione (GSSG). Transcriptome analysis revealed that ColdSe1 treatment upregulated genes associated with amino and nucleotide sugar metabolism, glutathione metabolism, and fructose and mannose metabolism. It also alleviated cold stress by modulating the MAPK signaling pathway, phytohormone signaling, and photosynthesis-related pathways, enriching genes and transcription factors linked to antioxidant metabolism and photosynthesis. Metabolomic analyses showed that ColdSe1 positively influenced amino acid glucose metabolism, glycerolipid metabolism, hormonal pathways, and alanine/glutamate pathways under cold stress, while also upregulating metabolites associated with plant secondary metabolites (e.g., flavonoids, phenolic compounds) and antioxidant metabolism (e.g., α-linolenic acid metabolism). In contrast, high selenium concentrations (ColdSe2) disrupted phenylpropanoid biosynthesis, α-linolenic acid metabolism, and ABC transporter function, exacerbating cold-stress injury. This study highlights the critical role of Se in mitigating cold stress in rice, offering a theoretical basis for its application as an agricultural stress reliever. Full article
(This article belongs to the Special Issue Genetic Research and Breeding to Improve Stress Resistance in Rice)
Show Figures

Figure 1

17 pages, 4748 KiB  
Article
Impact of the Gut Microbiota–Metabolite Axis on Intestinal Fatty Acid Absorption in Huainan Pigs
by Jing Wang, Liangying Zhu, Yangyang Wang, Qiang Ma, Xiangzhou Yan, Mingxun Li and Baosong Xing
Microorganisms 2025, 13(7), 1609; https://doi.org/10.3390/microorganisms13071609 - 8 Jul 2025
Viewed by 465
Abstract
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid [...] Read more.
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid absorption, we compared the rectal and colonic microbiota and metabolite profiles of Huainan and Large White pigs using 16S rRNA sequencing and untargeted metabolomics. HN pigs exhibited enriched Lactobacillus johnsonii and Lactobacillus amylovorus, along with a significantly higher Firmicutes/Bacteroidetes ratio. Functional predictions further revealed elevated microbial pathways related to glycolysis, pyruvate metabolism, and ABC transporters in HN pigs. Conversely, LW pigs showed increased abundance of potentially pro-inflammatory bacteria and enriched pathways for lipopolysaccharide (LPS) biosynthesis. Metabolites such as 4-ethyl-2-heptylthiazole and picolinic acid were significantly upregulated in HN pigs and served as robust biomarkers (Area Under the Curve, AUC = 1.0),with perfect discrimination observed in both rectal and colonic samples. Integrative analysis identified 52 co-enriched microbial and metabolic pathways in HN pigs, including short-chain fatty acid (SCFA) production, lipid biosynthesis and transport, amino acid metabolism, ABC transporter activity, and the PPAR signaling pathway, supporting a microbiota–metabolite axis that enhances fatty acid absorption and gut immune balance. These findings provide mechanistic insight into breed-specific fat deposition and offer candidate biomarkers for improving pork quality via precision nutrition and breeding. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop