Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 8-bromo-2′-deoxyguanosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2188 KiB  
Article
Probing the Effects of Chemical Modifications on Anticoagulant and Antiproliferative Activity of Thrombin Binding Aptamer
by Antonella Virgilio, Daniela Benigno, Carla Aliberti, Ivana Bello, Elisabetta Panza, Martina Smimmo, Valentina Vellecco, Veronica Esposito and Aldo Galeone
Int. J. Mol. Sci. 2025, 26(1), 134; https://doi.org/10.3390/ijms26010134 - 27 Dec 2024
Cited by 1 | Viewed by 990
Abstract
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic [...] Read more.
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity. To evaluate the effects of nucleobase and/or sugar moiety chemical modifications, five TBA analogues have been designed and synthesized considering that the chair-like G4 structure is crucial for biological activity. Their structural and biological properties have been investigated by Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), native polyacrylamide gel electrophoresis (PAGE) techniques, and PT and MTT assays. The analogue TBAB contains 8-bromo-2′-deoxyguanosine (B) in G-syn glycosidic positions, while TBAL and TBAM contain locked nucleic acid guanosine (L) or 2′-O-methylguanosine (M) in G-anti positions, respectively. Instead, both the two types of modifications have been introduced in TBABL and TBABM with the aim of obtaining synergistic effects. In fact, both derivatives include B in syn positions, exhibiting in turn L and M in the anti ones. The most appealing results have been obtained for TBABM, which revealed an interesting cytotoxic activity against breast and prostate cancer cell lines, while in the case of TBAB, extraordinary thermal stability (Tm approximately 30 °C higher than that of TBA) and an anticoagulant activity higher than original aptamer were observed, as expected. These data indicate TBAB as the best TBA anticoagulant analogue here investigated and TBABM as a promising antiproliferative derivative. Full article
Show Figures

Figure 1

14 pages, 2656 KiB  
Article
Improving the Biological Properties of Thrombin-Binding Aptamer by Incorporation of 8-Bromo-2′-Deoxyguanosine and 2′-Substituted RNA Analogues
by Antonella Virgilio, Daniela Benigno, Carla Aliberti, Valentina Vellecco, Mariarosaria Bucci, Veronica Esposito and Aldo Galeone
Int. J. Mol. Sci. 2023, 24(21), 15529; https://doi.org/10.3390/ijms242115529 - 24 Oct 2023
Cited by 3 | Viewed by 2022
Abstract
Thrombin-binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers. By adopting its peculiar chair-like G4 structure, TBA can efficiently bind to thrombin, thus producing an anticoagulant effect. The major limit to its therapeutic application is represented by its poor thermal and [...] Read more.
Thrombin-binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers. By adopting its peculiar chair-like G4 structure, TBA can efficiently bind to thrombin, thus producing an anticoagulant effect. The major limit to its therapeutic application is represented by its poor thermal and biological resistance. Therefore, numerous research studies have been focused on the design of TBA analogues with chemical modifications to improve its pharmacokinetic and pharmacodynamic properties. To maintain the functional recognition to protein surface on which TBA anticoagulant activity depends, it is essential to preserve the canonical antiparallel topology of the TBA quadruplex core. In this paper, we have designed three TBA variants with modified G-tetrads to evaluate the effects of nucleobase and sugar moiety chemical modifications on biological properties of TBA, preserving its chair-like G-quadruplex structure. All derivatives contain 8-bromo-2′-deoxyguanosine (GBr) in syn positions, while in the anti-positions, locked nucleic acid guanosine (GLNA) in the analogue TBABL, 2’-O-methylguanosine (GOMe) in TBABM, and 2’-F-riboguanosine (GF) in TBABF is present. CD (Circular Dichroism), CD melting, 1H-NMR (Nuclear Magnetic Resonance), and non-denaturing PAGE (Polyacrylamide Gel Electrophoresis), nuclease stability, prothrombin time (PT) and fibrinogen-clotting assays have been performed to investigate the structural and biological properties of these TBA analogues. The most interesting results have been obtained with TBABF, which revealed extraordinary thermal stability (Tm approximately 40 °C higher than that of TBA), anticoagulant activity almost doubled compared to the original aptamer, and, above all, a never-observed resistance to nucleases, as 50% of its G4 species was still present in 50% FBS at 24 h. These data indicate TBABF as one of the best TBA analogue ever designed and investigated, to the best of our knowledge, overcoming the main limitations to therapeutic applications of this aptamer. Full article
Show Figures

Figure 1

10 pages, 2202 KiB  
Article
Recognition Interface of the Thrombin Binding Aptamer Requires Antiparallel Topology of the Quadruplex Core
by Julia Svetlova, Makar Sardushkin, Natalia Kolganova and Edward Timofeev
Biomolecules 2021, 11(9), 1332; https://doi.org/10.3390/biom11091332 - 9 Sep 2021
Cited by 5 | Viewed by 2482
Abstract
Recent advances in G-quadruplex (GQ) studies have provided evidence for their important role in key biological processes (replication, transcription, genome stability, and epigenetics). These findings imply highly specific interactions between GQ structures and cellular proteins. The details of the interaction between GQs and [...] Read more.
Recent advances in G-quadruplex (GQ) studies have provided evidence for their important role in key biological processes (replication, transcription, genome stability, and epigenetics). These findings imply highly specific interactions between GQ structures and cellular proteins. The details of the interaction between GQs and cellular proteins remain unknown. It is now accepted that GQ loop elements play a major role in protein recognition. It remains unclear whether and to what extent the GQ core contributes to maintaining the recognition interface. In the current paper, we used the thrombin binding aptamer as a model to study the effect of modification in the quadruplex core on the ability of aptamer to interact with thrombin. We used alpha-2′-deoxyguanosine and 8-bromo-2′-deoxyguanosine to reconfigure the core or to affect synanti preferences of selected dG-residues. Our data suggest that core guanines not only support a particular type of GQ architecture, but also set structural parameters that make GQ protein recognition sensitive to quadruplex topology. Full article
Show Figures

Figure 1

27 pages, 1310 KiB  
Article
Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides
by Sakilam Satishkumar, Prasanna K. Vuram, Siva Subrahmanyam Relangi, Venkateshwarlu Gurram, Hong Zhou, Robert J. Kreitman, Michelle M. Martínez Montemayor, Lijia Yang, Muralidharan Kaliyaperumal, Somesh Sharma, Narender Pottabathini and Mahesh K. Lakshman
Molecules 2015, 20(10), 18437-18463; https://doi.org/10.3390/molecules201018437 - 9 Oct 2015
Cited by 13 | Viewed by 8824
Abstract
Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest [...] Read more.
Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active. Full article
(This article belongs to the Special Issue Nucleoside Modifications)
Show Figures

Graphical abstract

14 pages, 265 KiB  
Article
A General Synthesis of C8-Arylpurine Phosphoramidites
by Vorasit Vongsutilers, Jonathan R. Daft, Kevin H. Shaughnessy and Peter M. Gannett
Molecules 2009, 14(9), 3339-3352; https://doi.org/10.3390/molecules14093339 - 2 Sep 2009
Cited by 24 | Viewed by 11066
Abstract
A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2′-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to [...] Read more.
A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2′-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides. Full article
Show Figures

Graphical abstract

Back to TopTop