Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = 4-nitrophenol hydrogenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3833 KiB  
Article
Sustainable Alginate–Hydrochar Composite Beads for 2-Nitrophenol Adsorption in Batch and Fixed-Bed Systems
by Dalia Allouss, Nicolas Abatzoglou and Inès Esma Achouri
Materials 2025, 18(10), 2412; https://doi.org/10.3390/ma18102412 - 21 May 2025
Viewed by 608
Abstract
Addressing the removal of hazardous phenolic pollutants from water, this study introduces an eco-friendly adsorbent composed of waste-derived hydrochar immobilized in alginate beads (Alg/HC). The physicochemical properties of the Alg/HC beads were characterized using SEM, XRD, and FTIR, confirming hydrochar encapsulation and partial [...] Read more.
Addressing the removal of hazardous phenolic pollutants from water, this study introduces an eco-friendly adsorbent composed of waste-derived hydrochar immobilized in alginate beads (Alg/HC). The physicochemical properties of the Alg/HC beads were characterized using SEM, XRD, and FTIR, confirming hydrochar encapsulation and partial structural preservation. Batch studies revealed a maximum 2-nitrophenol (2-NP) adsorption capacity of 15.80 ± 0.62 mg/g at 30 mg/L of 2-NP, with kinetics best described by the Elovich and pseudo-second-order models. Freundlich isotherm fitting indicated multilayer adsorption on heterogeneous surfaces, likely governed by hydrogen bonding and π–π interactions. In a fixed-bed column system, Alg/HC beads demonstrated a continuous adsorption capacity of 6.84 ± 0.45 mg/g at 10 mg/L of 2-NP, with breakthrough behavior modeled by the Yoon–Nelson and Thomas equations. The beads maintained stable performance across four regeneration cycles using a mild water/ethanol desorption method. This work represents the first study to explore Alg/HC composites for 2-NP removal in both batch and continuous modes, demonstrating their potential as low-cost, regenerable adsorbents for tertiary treatment of phenolic industrial wastewater. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

18 pages, 6292 KiB  
Article
A N, S-Containing Graphene Oxide Composite for the Adsorptive Removal of p-Nitrophenol from Aqueous Solutions
by Bi Yang, Tao-Tao Shi, Wei-Guo Hu, Guan-Jin Gao, Yi-Ping Liu and Jin-Gang Yu
Molecules 2025, 30(9), 2046; https://doi.org/10.3390/molecules30092046 - 4 May 2025
Viewed by 501
Abstract
A novel 3-amino-5-mercapto-1,2,4-triazole functionalized graphene oxide composite (GO-ATT) was successfully prepared via a covalent coupling method, then employed for the removal of p-nitrophenol (PNP) from wastewater. The morphology as well as the composition of GO-ATT composite were investigated using Fourier transform infrared spectroscopy [...] Read more.
A novel 3-amino-5-mercapto-1,2,4-triazole functionalized graphene oxide composite (GO-ATT) was successfully prepared via a covalent coupling method, then employed for the removal of p-nitrophenol (PNP) from wastewater. The morphology as well as the composition of GO-ATT composite were investigated using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron spectroscopy (XPS). The surface charge of GO-ATT composite was evaluated by Zeta potential analyses. The surface area and pore size distribution of GO-ATT composite were analyzed using specific surface analyses using the Brunauer–Emmett–Teller (BET) method. Batch adsorption experiments were performed to investigate the effects of conditional factors, including contact time, solution pH, initial PNP concentration, and contact temperature, on the adsorption process. A maximum adsorption capacity of PNP by GO-ATT composite (0.287 mmol g−1) could be obtained at 25 °C. Freundlich isotherm (R2 > 0.92505) can better describe the adsorption behavior of PNP on GO-ATT composite. The thermodynamic functions (ΔG°, ΔH°, ΔS°) indicate that adsorption is a spontaneous, endothermic, entropy-increasing process and features physisorption. The adsorption behavior of PNP on GO-ATT composite conformed to the nonlinear pseudo-second-order kinetic model. Adsorption mechanism investigation indicated that the electrostatic, π-π stacking, and hydrogen bonding interactions were involved in the adsorption process. After 10 adsorption–desorption cycles, the adsorbent exhibited a stable and efficient removal rate (94%) for PNP. Due to its advantages of a high efficiency, excellent reusability, and high stability, the covalently coupled GO-ATT composite might be used as an effective adsorbent for the removal of phenolic contaminants from wastewater. Full article
(This article belongs to the Special Issue Design and Application Based on Versatile Nano-Composites)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
ZIF-67-Derived Co−N−C Supported Ni Nanoparticles as Efficient Recyclable Catalyst for Hydrogenation of 4-Nitrophenol
by Juti Rani Deka, Diganta Saikia, Jia-Cheng Lin, Wan-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Catalysts 2025, 15(4), 343; https://doi.org/10.3390/catal15040343 - 1 Apr 2025
Viewed by 828
Abstract
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy [...] Read more.
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometer (XPS) were used to characterize the prepared materials. The TEM images reveal that the nanoparticles were distributed homogeneously in the carbon support. The N atoms in the carbon support serve as the sites for the nucleation and uniform growth of Ni nanoparticles. The catalyst was used for the degradation of environmentally harmful 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among all the catalysts investigated, Ni(10)@Co-N-C exhibited the highest catalytic activity for the hydrogenation of 4-NP, with a specific reaction rate of 6.1 × 10−3 s−1, activity parameter of 31 s−1g−1, and turn over frequency (TOF) of 1.78 × 1019 molecules gmetal−1s−1. On the other hand, the specific reaction rate and TOF value were 1.7 × 10−3 s−1 and 6.96 × 1018 molecules gmetal−1s−1, respectively, for Co−N−C. This suggests that Ni(10)@Co−N−C is about three times more catalytically active than the Co−N−C catalyst. The superb activity of Ni(10)@Co−N−C in comparison to Co−N−C can be ascribed to the homogeneous dispersion of small-sized Ni nanoparticles, the interconnected three-dimensional porous arrangement of the support Co−N−C, the presence of N atoms in the carbon framework that stabilize metal nanoparticles, and the synergistic electronic effect between Ni and Co. The Ni(10)@Co−N−C catalyst maintained consistent catalytic activity over multiple cycles, which suggests that porous N-containing carbon support can effectively prevent aggregation and leaching of metal nanoparticles. The ICP-AES analysis of the recycled Ni(10)@Co−N−C revealed a slight reduction in metal content compared to the fresh sample, suggesting almost negligible leaching of metal nanoparticles. Full article
Show Figures

Graphical abstract

13 pages, 1893 KiB  
Article
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water
by Jan W. Farag, Ragaa Khalil, Edwin Avila and Young-Seok Shon
Nanomaterials 2025, 15(5), 405; https://doi.org/10.3390/nano15050405 - 6 Mar 2025
Viewed by 741
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, [...] Read more.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 6174 KiB  
Article
Enhancing H2O2 Generation Using Activated Carbon Electrocatalyst Cathode: Experimental and Computational Insights on Current, Cathode Design, and Reactor Configuration
by Maria del Mar Cerrillo-Gonzalez, Amir Taqieddin, Stephanie Sarrouf, Nima Sakhaee, Juan Manuel Paz-García, Akram N. Alshawabkeh and Muhammad Fahad Ehsan
Catalysts 2025, 15(2), 189; https://doi.org/10.3390/catal15020189 - 18 Feb 2025
Viewed by 834
Abstract
Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2) [...] Read more.
Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), for removing p-nitrophenol (PNP) as a representative contaminant. The findings suggest that these parameters exert a factorial effect on PNP removal, which is statistically endorsed via the analysis of variance. The −20 + 40 mesh GAC exhibited superior electrocatalytic performance due to its optimal balance of porosity and active surface area. Additionally, the reactor configuration was also studied. Employing two reactors in series configuration resulted in a 23% increase in H2O2 generation and a 32% enhancement in overall PNP removal compared with the single reactor configuration. This enhancement is attributed to (i) the enhanced electroactive area, (ii) the greater retention time of PNP over the electrocatalyst surface, and (iii) the increased dissolved oxygen and H2O2 content in the second reactor, promoting the overall H2O2 generation. Numerical simulations were conducted to compute H2O2 concentration profiles, providing a detailed representation of the physical, chemical, and electrochemical processes. The model exhibited a high degree of accuracy compared with the experimental measurements, with R2 values ranging from ~0.76 to 0.99 and MAE values between ~0.04 and 0.23 mg/L. The simulation results highlight a strong interplay between H2O2 generation, its reaction kinetics during PNP removal, and electrode utilization efficiency. These findings emphasize the importance of optimizing the applied current magnitude and reactor operation duration to maximize electrode efficiency and H2O2 generation and utilization, while minimizing electrochemical bubble blockage. Overall, this study provides fundamental insights to optimize the electroactive area for enhanced ROS generation toward efficient contaminant removal, supporting sustainable groundwater remediation technologies in the face of emerging pollutants. Full article
Show Figures

Graphical abstract

20 pages, 12643 KiB  
Article
Titanium Dioxide 1D Nanostructures as Photocatalysts for Degradation and Removal of Pollutants in Water
by Dora María Frías Márquez, José Ángel Méndez González, Rosendo López González, Cinthia García Mendoza, Francisco Javier Tzompantzi Morales, Patricia Quintana Owen and Mayra Angélica Alvarez Lemus
Catalysts 2024, 14(12), 896; https://doi.org/10.3390/catal14120896 - 6 Dec 2024
Cited by 1 | Viewed by 1316
Abstract
The oxidation of organic pollutants in water is the most reported application of a Titanium dioxide (TiO2) photocatalyst. During the last decade, photoreduction with TiO2 has also been explored but simultaneous capabilities for unmodified TiO2 have not been reported [...] Read more.
The oxidation of organic pollutants in water is the most reported application of a Titanium dioxide (TiO2) photocatalyst. During the last decade, photoreduction with TiO2 has also been explored but simultaneous capabilities for unmodified TiO2 have not been reported yet. Here, we reported on the fabrication of TiO2 nanorods using hydrothermal treatment and compared the effect of two different TiO2 powders as the starting material: P-25 and TiO2 sol–gel (N-P25 and N-TiO2, respectively) which were further calcined at 400 °C (N-P25-400 and N-TiO2-400). XPS and XRD analyses confirmed the presence of sodium and hydrogen titanates in N-P25, but also an anatase structure for N-TiO2. The specific surface area of the calcined samples decreased compared to the dried samples. Photocatalytic activity was evaluated using phenol and methyl orange for degradation, whereas 4-nitrophenol was used for photoreduction. Irradiation of the suspension was performed under UV light (λ = 254 nm). The results demonstrated that the nanorods calcined at 400 °C were more photoactive since methyl orange (20 ppm) degradation reached 86% after 2 h, when N-TiO2-400 was used. On the other hand, phenol (20 ppm) was completely degraded by the presence of N-P25-400 after 2 h. Photoreduction of 4-nitrophenol (5 ppm) was achieved by the N-TiO2-400 during the same period. These results demonstrate that the presence of Ti3+ and the source of TiO2 have a significant effect on the photocatalytic activity of TiO2 nanorods. Additionally, the removal of methylene blue (20 ppm) was performed, demonstrating that N-TiO2 exhibited a high adsorption capacity for this dye. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol
by Alicja Kuś, Anna Leśniewicz, Anna Dzimitrowicz, Pawel Pohl and Piotr Cyganowski
Int. J. Mol. Sci. 2024, 25(20), 11319; https://doi.org/10.3390/ijms252011319 - 21 Oct 2024
Cited by 2 | Viewed by 1715
Abstract
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These [...] Read more.
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These have a potential to be reductors for complexes of metals. In this context, within the present study, a set of CAF extracts derived from coffee beans and coffee grounds were obtained and then used for the one-step reduction of ReO4 ions with no additional toxic chemicals. Within this approach, CAF was applied as a secondary, green resource for the synthesis of unique rhenium nanoparticles (ReNPs) containing Re species at 0 and +6 oxidation states. The obtained ReNPs were identified and characterized with the use of X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Further, the capping and stabilization of ReNPs by CAF were verified with the aid of Fourier transformation infrared spectroscopy (FT-IR). The so-obtained “green” ReNPs were then used as a homogenous catalyst in the catalytic hydrogenation of 4-nitrophenol (4-NP). This new nanomaterial revealed a superior catalytic activity, leading to the complete reduction of 4-NP to 4-aminophenol within 40–60 min with a first-order rate constant of 0.255 min−1. Full article
(This article belongs to the Special Issue Metal Nanoparticles: From Fundamental Studies to New Applications)
Show Figures

Figure 1

14 pages, 28964 KiB  
Article
The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride
by Gifty Sara Rolly, Alina Sermiagin, Krishnamoorthy Sathiyan, Dan Meyerstein and Tomer Zidki
Catalysts 2024, 14(9), 606; https://doi.org/10.3390/catal14090606 - 9 Sep 2024
Cited by 1 | Viewed by 1026
Abstract
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on [...] Read more.
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on the relative yields of [HD]/[H2] and [D2]/[H2]. The findings show a consistent increase in HD yields with rising [BD4] concentrations. Notably, the sequence of HD yield enhancement follows the order of TiO2-Au0-NPs < Au0-NPs < SiO2-Au0-NPs. Conversely, the rate of H2 evolution during BH4- hydrolysis exhibits an inverse trend, with TiO2-Au0-NPs outperforming the others, followed by Au0-NPs and SiO2-Au0-NPs, demonstrating the opposing effects exerted by the TiO2 and SiO2 supports on the catalytic processes. Further, the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) confirms the catalytic mechanism, with TiO2-Au0-NPs demonstrating superior activity. The catalytic activity observed aligns with the order of TiO2-Au0-NPs > Au0-NPs > SiO2-Au0-NPs, suggesting that SiO2 donates electrons to Au0-NPs, while TiO2 withdraws them. It is of interest to note that two very different processes, that clearly proceed via different mechanisms, are affected similarly by the supports. This study reveals that the choice of support material influences catalytic activity, impacting overall yield and efficiency. These findings underscore the importance of selecting appropriate support materials for tailored catalytic outcomes. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Graphical abstract

18 pages, 5732 KiB  
Article
Highly Efficient Electrospun Silver Decorated Graphene Oxide Nanocomposites on Poly(vinylidene fluoride) (PVDF@GO-Ag) Hybrid Membrane for Reduction of 4-Nitrophenol
by Xiaoben Yang, Zhen He, Lei Jin, Huiyang Chen, Qianglin Li, Ling Wu, Zhenghong Huang and Mingxi Wang
Molecules 2024, 29(16), 3930; https://doi.org/10.3390/molecules29163930 - 20 Aug 2024
Cited by 4 | Viewed by 1495
Abstract
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and [...] Read more.
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and 2 wt% Ag (PVDF-1-2) exhibited the most desired performance for the catalytic reduction of 4-NP. Importantly, PVDF-1-2 exhibited excellent cycling stability in 10 catalytic cycle tests and was highly amenable to separation. This property effectively addresses the significant challenges associated with the practical application of nanocatalysts. Furthermore, density-functional theory (DFT) calculations have demonstrated that the GO-Ag nanocomposites exhibit the strongest adsorption capacity for 4-NP when a specific ratio of GO and Ag is achieved, accompanied by the loading of Ag nanoclusters onto GO. Additionally, the study demonstrated that an increase in temperature significantly accelerated the reaction rate, in line with the van’t Hoff rule. This study provides an effective and environmentally friendly solution for the treatment of 4-NP in wastewater. Full article
Show Figures

Graphical abstract

10 pages, 1611 KiB  
Article
Analytical Method Development and Dermal Absorption of 4-Amino-3-Nitrophenol (4A3NP), a Hair Dye Ingredient under the Oxidative or Non-Oxidative Condition
by Hyang Yeon Kim, Yu Jin Kim, Jung Dae Lee, Hak Rim Kim and Dong-Wan Seo
Toxics 2024, 12(5), 340; https://doi.org/10.3390/toxics12050340 - 7 May 2024
Cited by 1 | Viewed by 1413
Abstract
The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and [...] Read more.
The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and 1.5%, respectively. Despite this widespread use, risk assessment of 4A3NP has not been completed due to the lack of proper dermal absorption data. Therefore, in this study, both the analytical method validation and in vitro dermal absorption study of 4A3NP were conducted following the guidelines provided by the Korea Ministry of Food and Drug Safety (MFDS). Before proceeding with the dermal absorption study, analytical methods were developed for the quantitation of 4A3NP through multiple reaction monitoring (MRM) via liquid chromatography-mass spectrometry (LC-MS) in various matrices, including swab wash (WASH), stratum corneum (SC), skin (SKIN, comprising the dermis and epidermis), and receptor fluid (RF). These developed methods demonstrated excellent linearity (R2 = 0.9962–0.9993), accuracy (93.5–111.73%), and precision (1.7–14.46%) in accordance with the validation guidelines.The dermal absorption of 4A3NP was determined using Franz diffusion cells with mini-pig skin as the barrier. Under both non-oxidative and oxidative (6% hydrogen peroxide (H2O2): water, 1:1) hair dye conditions, 1% and 1.5% concentrations of 4A3NP were applied to the skin at a rate of 10 μL/cm2, respectively. The total dermal absorption rates of 4A3NP under non-oxidative (1%) and oxidative (1.5%) conditions were determined to be 5.62 ± 2.19% (5.62 ± 2.19 μg/cm2) and 2.83 ± 1.48% (4.24 ± 2.21 μg/cm2), respectively. Full article
(This article belongs to the Special Issue Toxicokinetics of Chemicals in Consumer Products)
Show Figures

Figure 1

21 pages, 6181 KiB  
Article
Emulsion Liquid Membranes Based on Os–NP/n–Decanol or n–Dodecanol Nanodispersions for p–Nitrophenol Reduction
by Andreia Pîrțac, Aurelia Cristina Nechifor, Szidonia-Katalin Tanczos, Ovidiu Cristian Oprea, Alexandra Raluca Grosu, Cristian Matei, Vlad-Alexandru Grosu, Bogdan Ștefan Vasile, Paul Constantin Albu and Gheorghe Nechifor
Molecules 2024, 29(8), 1842; https://doi.org/10.3390/molecules29081842 - 18 Apr 2024
Cited by 4 | Viewed by 1394
Abstract
Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n–decanol (nD) or n–dodecanol (nDD) is presented, which also works as an emulsion membrane. [...] Read more.
Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n–decanol (nD) or n–dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p–nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n–alcohols. The variables of the PNP conversion process and p–aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10−3 s−1 for n–dodecanol and 0.9 × 10−3 s−1 for n–decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p–aminophenol in the acid-receiving phase. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 3rd Edition)
Show Figures

Graphical abstract

19 pages, 7229 KiB  
Article
Schiff Base Functionalized Cellulose: Towards Strong Support-Cobalt Nanoparticles Interactions for High Catalytic Performances
by Hicham Aitbella, Larbi Belachemi, Nicolas Merle, Philippe Zinck and Hamid Kaddami
Molecules 2024, 29(8), 1734; https://doi.org/10.3390/molecules29081734 - 11 Apr 2024
Cited by 8 | Viewed by 2259
Abstract
A new hybrid catalyst consisting of cobalt nanoparticles immobilized onto cellulose was developed. The cellulosic matrix is derived from date palm biomass waste, which was oxidized by sodium periodate to yield dialdehyde and was further derivatized by grafting orthoaminophenol as a metal ion [...] Read more.
A new hybrid catalyst consisting of cobalt nanoparticles immobilized onto cellulose was developed. The cellulosic matrix is derived from date palm biomass waste, which was oxidized by sodium periodate to yield dialdehyde and was further derivatized by grafting orthoaminophenol as a metal ion complexing agent. The new hybrid catalyst was characterized by FT-IR, solid-state NMR, XRD, SEM, TEM, ICP, and XPS. The catalytic potential of the nanocatalyst was then evaluated in the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol under mild experimental conditions in aqueous medium in the presence of NaBH4 at room temperature. The reaction achieved complete conversion within a short period of 7 min. The rate constant was calculated to be K = 8.7 × 10−3 s−1. The catalyst was recycled for eight cycles. Furthermore, we explored the application of the same catalyst for the hydrogenation of cinnamaldehyde using dihydrogen under different reaction conditions. The results obtained were highly promising, exhibiting both high conversion and excellent selectivity in cinnamyl alcohol. Full article
(This article belongs to the Special Issue Advances in Polysaccharide Materials II)
Show Figures

Graphical abstract

19 pages, 13655 KiB  
Article
High-Entropy Alloy Al0.2Co1.5CrFeNi1.5Ti0.5 Prepared from High-Entropy Oxide (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a Deoxidation Process via a CaH2-Assisted Molten Salt Method
by Yasukazu Kobayashi, Shota Yokoyama and Ryo Shoji
Metals 2024, 14(4), 443; https://doi.org/10.3390/met14040443 - 10 Apr 2024
Cited by 3 | Viewed by 2101
Abstract
High-entropy alloys (HEAs) have attracted a great deal of research interest these days because of their attractive properties. Low-temperature chemical synthesis methods are being developed to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA Al0.2Co1.5 [...] Read more.
High-entropy alloys (HEAs) have attracted a great deal of research interest these days because of their attractive properties. Low-temperature chemical synthesis methods are being developed to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles from high-entropy oxide (HEO) (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a deoxidation process via a CaH2-assisted molten salt method at 600 °C. X-ray diffraction measurements demonstrated that the oxide precursor and the reduced product have single-phases of spinel structure and face-centered cubic structures, indicating the formation of HEO and HEA, respectively. The HEA nanoparticles exhibited superior catalytic performance in the liquid-phase hydrogenation of p-nitrophenol at room temperature with little leaching of the component elements. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDX) exhibited a good distribution of constituent elements over the HEA nanoparticles in a micro-sized range. However, transmission electron microscopy (TEM) with EDX revealed a slight deviation of elemental distributions of Al and Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to the incomplete reduction of aluminum and titanium oxides. The elemental homogeneity in the HEA nanoparticles could be improved by taking advantage of the HEO precursor with homogeneous elemental distributions, but the experimental results suggested the importance of the total reduction of oxide precursors to prepare homogeneous HEAs from HEOs. Full article
Show Figures

Figure 1

14 pages, 2234 KiB  
Article
CaH2-Assisted Molten Salt Synthesis of Zinc-Rich Intermetallic Compounds of RhZn13 and Pt3Zn10 for Catalytic Selective Hydrogenation Application
by Yasukazu Kobayashi, Koharu Yamamoto and Ryo Shoji
Crystals 2024, 14(3), 278; https://doi.org/10.3390/cryst14030278 - 15 Mar 2024
Viewed by 1781
Abstract
Zinc-included intermetallic compound catalysts of RhZn, PtZn, and PdZn with a molar ration of Zn/metal = 1/1, which are generally prepared using a hydrogen reduction approach, are known to show excellent catalytic performance in some selective hydrogenations of organic compounds. In this study, [...] Read more.
Zinc-included intermetallic compound catalysts of RhZn, PtZn, and PdZn with a molar ration of Zn/metal = 1/1, which are generally prepared using a hydrogen reduction approach, are known to show excellent catalytic performance in some selective hydrogenations of organic compounds. In this study, in order to reduce the incorporated mounts of the expensive noble metals, we attempted to prepare zinc-rich intermetallic compounds via a CaH2-assisted molten salt synthesis method with a stronger reduction capacity than the common hydrogen reduction method. X-ray diffraction results indicated the formation of RhZn13 and Pt3Zn10 in the samples prepared by the reduction of ZnO-supported metal precursors. In a hydrogenation reaction of p-nitrophenol to p-aminophenol, the ZnO-supported RhZn13 and Pt3Zn10 catalysts showed a higher selectivity than the RhZn/ZnO and PtZn/ZnO catalysts with the almost similar conversions. Thus, it was demonstrated that the zinc-rich intermetallic compounds of RhZn13 and Pt3Zn10 could be superior selective hydrogenation catalysts compared to the conventional intermetallic compound catalysts of RhZn and PtZn. Full article
Show Figures

Figure 1

18 pages, 3008 KiB  
Article
Organoplatinum Chemistry Related to Alkane Oxidation: The Effect of a Nitro Substituent in Ligands Having an Appended Phenol Group
by Anwar Abo-Amer, Mohamed E. Moustafa, Paul D. Boyle and Richard J. Puddephatt
Inorganics 2024, 12(1), 32; https://doi.org/10.3390/inorganics12010032 - 16 Jan 2024
Cited by 1 | Viewed by 2598
Abstract
The organoplatinum chemistry of the ligands 2-C5H4N-CH2-NH-C6H3-2-OH-5-X (L1, X = H; L3, X = NO2) and 2-C5H4N-CH=N-C6H3-2-OH-5-X (L2, [...] Read more.
The organoplatinum chemistry of the ligands 2-C5H4N-CH2-NH-C6H3-2-OH-5-X (L1, X = H; L3, X = NO2) and 2-C5H4N-CH=N-C6H3-2-OH-5-X (L2, X = H; L4, X = NO2), which contain an appended phenol substituent, is described. Comparisons are made between the ligands with amine or imine groups (L1, L3 vs. L2, L4) and ligands with X = H or NO2 (L1, L2 vs. L3, L4), and major differences are observed. Thus, on reaction with the cycloneophylplatinum(II) complex [{Pt(CH2CMe2C6H4)(μ-SMe2)}2], ligands L1, L2 and L4 give the corresponding platinum(II) complexes [Pt(CH2CMe2C6H4)(κ2-N,N′-L)], containing a Pt··HO hydrogen bond, whereas L3 gives a mixture of isomeric platinum(IV) hydride complexes [PtH(CH2CMe2C6H4)(κ3-N,N′,O-L3-H)], which are formed by oxidative addition of the phenol O-H bond and which react further with oxygen to give [Pt(OH)(CH2CMe2C6H4)(κ3-N,N′,O-L3-H)]. The differences in reactivity are proposed to be due to the greater acidity of the nitro-substituted phenol groups in L3 and L4 and to the greater ability of the deprotonated amine ligand L3 over L4 to stabilize platinum(IV) by adopting the fac3-N,N′,O-L3-H coordination mode. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop