Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = 3H- and 14C-dating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4011 KB  
Article
Study on the High-Efficiency Expression of Horseradish Peroxidase in Pichia pastoris
by Yaping Wang, Yidan Jing, Weizhen Li, Yuqing Wang, Fei Li, Yimin Qiu and Ben Rao
Molecules 2025, 30(22), 4374; https://doi.org/10.3390/molecules30224374 - 12 Nov 2025
Abstract
Horseradish peroxidase (HRP) is a heme-containing oxidoreductase with extensive applications in biotechnology, medical diagnostics, and environmental protection. In this study, Pichia pastoris was utilized to produce HRP. Successfully, expression strains with 1–5 copies of HRP-C were constructed, and the strain with the highest [...] Read more.
Horseradish peroxidase (HRP) is a heme-containing oxidoreductase with extensive applications in biotechnology, medical diagnostics, and environmental protection. In this study, Pichia pastoris was utilized to produce HRP. Successfully, expression strains with 1–5 copies of HRP-C were constructed, and the strain with the highest expression level and activity of HRP-C was obtained. Different molecular chaperones (PDI1, HAC1, BIP1) were selected, and co-expression was carried out through co-induction and separate induction methods. The results showed that the yield of HRP increased approximately 1.4 times with the assistance of PDI1 and HAC1 molecular chaperones in the 3-copy Pichia pastoris expression strain, with enzyme activities increasing by 1.2-fold and 1.3-fold, respectively. High-density fermentation of the recombinant strain transformed with BDM-PDI1-HRP-C-3C was carried out in a 50 L fermenter, and after methanol induction for 72 h, a target protein expression level of up to 200 mg/L was achieved. The enzyme activity reached 1796 U/mL, which is nearly three times higher than that of shake-flask fermentation and is the highest reported in the literature to date. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

25 pages, 8162 KB  
Article
Genesis of the Laoliwan Ag-Pb-Zn Deposit, Southern Margin of the North China Craton, China: Constrained by C-H-O-S-Pb Isotopes and Sulfide Rb-Sr Geochronology
by Jianling Xue, Zhenshan Pang, Hui Chen, Peichao Ding, Ruya Jia, Wen Tao, Ruifeng Shen, Banglu Zhang, Nini Mou and Yan Yang
Minerals 2025, 15(11), 1122; https://doi.org/10.3390/min15111122 - 28 Oct 2025
Viewed by 293
Abstract
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early [...] Read more.
The Laoliwan Ag-Pb-Zn deposit is situated in the southern margin of the North China Craton and represents the first large-scale Ag-Pb-Zn ore deposit discovered in the Xiaoshan District. Ag-Pb-Zn orebodies are structurally controlled by NW- and NNW-trending faults and primarily hosted within early Cretaceous granite porphyry intrusions. In this study, sulfide Rb-Sr isotope dating and C-H-O-S-Pb multiple isotope compositions were conducted to constrain the ore genesis of this deposit. The Rb-Sr isotopic data of sulfides yield a weighted mean isochron age of 132.8 ± 9.5 Ma and an initial 87Sr/86Sr ratio of 0.7115 ± 0.00016, indicating that mineralization occurred during the early Cretaceous and the ore-forming materials were derived from a crust–mantle mixed reservoir. The δ13 C (−1.3‰ to 0.7‰), δD (−96.3‰ to −86.7‰) and δ18OH2O (0.3‰ to 5.6‰) values suggest that the ore-forming fluids were mainly derived from magmatic water with a contribution of meteoric water during mineralization. The δ34S values of sulfides (+2.0‰ to +5.8‰) indicate a magmatic source. The Pb isotope data (206Pb/204Pb = 17.301–17.892, 207Pb/204Pb = 15.498–15.560, 208Pb/204Pb = 37.873–38.029) also reveal that the ore-forming materials originated from the lower crust with a small amount from the mantle source. By integrating geochronological and geochemical data, this study proposes that the Laoliwan Ag-Pb-Zn deposit is characterized as an epithermal deposit, with potential for the discovery of concealed porphyry Cu-Mo mineralization at depth. It is inferred to be related to tectonic–magmatic–fluid activities in the context of early Cretaceous lithospheric thinning along the southern margin of the North China Craton. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

25 pages, 9280 KB  
Article
Petrogenesis of the Chamuhan Intrusion in the Southern Great Xing’an Range: Constraints from Zircon U-Pb Dating and Petrogeochemistry
by Yutong Song, Gongzheng Chen, Guang Wu, Tiegang Li, Tong Zhang, Jinfang Wang, Yingjie Li, Chenyu Liu, Yuze Li and Yinlong Wang
Minerals 2025, 15(10), 1085; https://doi.org/10.3390/min15101085 - 18 Oct 2025
Viewed by 256
Abstract
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. [...] Read more.
The Southern Great Xing’an Range (SGXR), an important W–Sn polymetallic metallogenic belt in northern China, hosts multiphase magmatism and has witnessed recent discoveries of multiple tungsten–tin polymetallic deposits. The W–Sn mineralization in this area is intimately associated with Early Cretaceous highly fractionated granites. The Chamuhan deposit, a small-sized W–Mo polymetallic deposit in SGXR, is genetically linked to a concealed fine-grained porphyritic alkali feldspar granite intrusion. In this study, we present the LA-ICP-MS zircon U-Pb ages, whole-rock geochemical, and electron probe microanalysis (EPMA) mineral chemistry to constrain the petrogenesis and metallogenic implications of this granite. Zircon U–Pb dating yields a crystallization age of 141.3 ± 1.2 Ma, consistent with molybdenite Re–Os ages. The granite is characterized by elevated SiO2 (76.9–79.1 wt%) and total alkalis (7.3–8.5 wt%), and exhibits peraluminous high-K calc-alkaline affinity (A/CNK = 1.37–1.57). Geochemical signatures reveal enrichment in large ion lithophile elements (LILEs, e.g., Rb, Th, U) coupled with depletion in high-field strength elements (HFSEs, e.g., Ba, Sr, P, Eu, Ti, Nb, Ta), and are accompanied by right-sloping REE patterns with LREE enrichment and HREE depletion. EPMA data indicate that the mica in the intrusion is primarily zinnwaldite and Li-rich phengite, whereas the plagioclase occurs as albite. The feldspar thermobarometry yields crystallization temperatures of 689–778 °C and 313 MPa–454 MPa, while the melt H2O content and oxygen fugacity are 8.61–11.1 wt% and −22.58–−14.48, respectively. These geochemical signatures indicate that the granites are highly fractionated I-type granites with extensive fractional crystallization of various minerals like plagioclase, K-feldspar, and apatite, etc. From the Late Jurassic to the Early Cretaceous, the subduction and rollback of the Paleo-Pacific Ocean plate resulted in extensional tectonic environments in eastern China. Asthenospheric upwelling and lower crustal melting generated parental magmas, wherein progressive fractional crystallization during ascent concentrated ore-forming elements and volatiles within residual melts. This process played a key role in the formation of the Chamuhan deposit, exemplifying the metallogenic potential of highly evolved granitic systems in the SGXR. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

26 pages, 2735 KB  
Article
Bioengineering Caulobacter vibrioides for Xylanase Applications in the Bakery Industry
by Bruna Simioni, Paula Maria Carneiro Rocha, Adriano Fávero, José Luis da Conceição Silva, Rinaldo Ferreira Gandra, Alexandre Maller, Marina Kimiko Kadowaki and Rita de Cássia Garcia Simão
Microorganisms 2025, 13(10), 2367; https://doi.org/10.3390/microorganisms13102367 - 15 Oct 2025
Viewed by 680
Abstract
The present study investigated the impact of genetic engineering strategies to produce a cell-free xylanase for applications in the baking industry. The xynA1 gene from the nonpathogenic bacterium Caulobacter vibrioides was integrated into the pAS22 vector with a xylose-inducible promoter and introduced back [...] Read more.
The present study investigated the impact of genetic engineering strategies to produce a cell-free xylanase for applications in the baking industry. The xynA1 gene from the nonpathogenic bacterium Caulobacter vibrioides was integrated into the pAS22 vector with a xylose-inducible promoter and introduced back into the bacteria, resulting in the creation of the BS-xynA1. This construct exhibited substantial secreted xylanase 1 (XynA1) activity, reaching 17.22 U/mL, and a specific activity of 278.64 U/mg after an 18 h growth period with 0.3% (v/v) xylose plus 0.2% (w/v) corn straw. RT-qPCR analysis confirmed that higher xylanase activity in C. vibrioides cells was correlated with increased transcription of the xynA1 gene in the induction medium. Moreover, BS-xynA1 cells coexpress other enzymes, including xylanase 2 (XynA2), cellulase, pectinase, α-amylase, β-glucosidase, β-xylosidase, and α-L-arabinosidase, at low levels (≤2 U/mL). In vitro comparison of cell-free xylanases from BS-xynA1 with three commercially available xylanase-containing mixtures commonly utilized in baking protocols revealed its superior specific activity (163.4 U/mg) across a broad temperature range (30–100 °C), with optimal performance at 50 °C. In practical baking tests, the addition of cell-free XynA1 led to a reduction in dough kneading time and increase in bread height compared to those of the control. Notably, the incorporation of XynA1 resulted in enhanced alveolar structure formation within the bread crumb. Specifically, the following changes were observed in the mass parameters compared to those of the control: an increase in extensibility, elasticity, and deformation energy, and subsequent improvements in strength. Additionally, XynA1 addition led to a reduction in toughness and toughness/elasticity index, indicating a reduction in the mass stiffness of the enzyme-treated bread. To date, this is the first successful application of recombinant XynA1 from C. vibrioides in biotechnological processes related to baking, underscoring the potential and prospects in the food industry. Full article
(This article belongs to the Special Issue Microbial Enzymes—Tools for Biotechnological Processes)
Show Figures

Figure 1

28 pages, 7693 KB  
Article
Precision Lost with Complexity: On an Extraordinary New Species of Pholcidae (Araneae, Smeringopinae) from Western DR Congo
by Arnaud Henrard, Rudy Jocqué, Nathalie Smitz and Virginie Grignet
Taxonomy 2025, 5(4), 57; https://doi.org/10.3390/taxonomy5040057 - 15 Oct 2025
Viewed by 921
Abstract
A remarkable new pholcid spider species is described from the Democratic Republic of the Congo: Smeringopina polychila sp. nov. The male is distinguished by a unique and previously undocumented structure, here termed the “parachila”, which has not been observed in any other spider [...] Read more.
A remarkable new pholcid spider species is described from the Democratic Republic of the Congo: Smeringopina polychila sp. nov. The male is distinguished by a unique and previously undocumented structure, here termed the “parachila”, which has not been observed in any other spider to date. The description is complemented by high-quality illustrations, including detailed drawings, photographs, micro-CT scans, and 3D reconstructions of the genitalia and the newly discovered male structure. Remarkable intraspecific variations, both somatic and genitalic, in males are also highlighted and discussed. A phylogenetic analysis based on the cytochrome c oxidase subunit I, 16S ribosomal RNA and histone H3 gene fragments is presented to tentatively place the new species into an existing phylogenetic framework. The results of the molecular analyses confirm that the new species belongs to the subfamily Smeringopinae and is nested within the genus Smeringopina Kraus, 1957. Full article
Show Figures

Graphical abstract

31 pages, 25829 KB  
Article
The Hepatoprotective Properties of the Revised Formulation of Dahuang Xiaoshi Tang, an Ancient Chinese Herbal Decoction, Are Probed by Integrated Metabolomics and Network Pharmacology
by Xiangpeng Kong, Xiaoyang Wang, Haiqin Ren, Yajun Yao, Hui Zhang, Huifeng Li, Huifang Li, Yangang Cheng, Zhuqing Song, Miaorong Pei and Karl Wah Keung Tsim
Pharmaceuticals 2025, 18(10), 1534; https://doi.org/10.3390/ph18101534 - 13 Oct 2025
Viewed by 820
Abstract
Background: Dahuang Xiaoshi Tang (DXT), an ancient Chinese herbal remedy dating back to 220 AD, as documented initially in “Treatise on Febrile and Miscellaneous Diseases,” is used to treat damp-heat jaundice with interior sthenia syndrome. In DXT, anthraquinones and alkaloids form insoluble [...] Read more.
Background: Dahuang Xiaoshi Tang (DXT), an ancient Chinese herbal remedy dating back to 220 AD, as documented initially in “Treatise on Febrile and Miscellaneous Diseases,” is used to treat damp-heat jaundice with interior sthenia syndrome. In DXT, anthraquinones and alkaloids form insoluble complexes, reducing its effectiveness. A revised herbal extract, DXT-M, was developed, and its hepatoprotective properties were demonstrated in animal models using pharmacodynamic, metabolomic, network pharmacological, and toxicological approaches. Methods: The α-naphthalene isothiocyanate was utilised to establish the acute liver injury rat model. The assays of glutamate pyruvate transaminase, glutamic oxalacetic transaminase, alkaline phosphatase, bilirubin, total bile acid, complement 3 (C3) and C4, interleukin-2 (IL-2) and IL-6, tumour necrosis factor α (TNF-α), and pathological morphology were used to evaluate the hepatoprotection of DXT in comparison to DXT-M. The 1H-NMR-based serum and urine metabolomics were performed to identify potential biomarkers and metabolic pathways of DXT-M in treating hepatitis. The intrinsic regulatory mechanisms of DXT in liver protection, as well as the combination of network toxicology, were elucidated. Statistical analyses included RM two-way ANOVA with Geisser–Greenhouse correction and Dunnett’s post hoc test for longitudinal data, and one-way ANOVA with Dunnett’s post hoc test for group comparisons. Data were shown as mean ± SD. Results: Liver-injured animals exhibited weight loss, ruffled fur, and liver damage, accompanied by elevated liver function indicators. DXT-M effectively improved these symptoms, repaired liver damage, restored liver function, and regulated immune status by modulating complement 3. Metabonomics and other analyses indicated the CYP/GST-ROS axis is key to its hepatoprotective effects. DXT-M outperformed DXT in efficacy. Conclusions: DXT-M demonstrated significant effectiveness in restoring liver pathological damage, correcting abnormal biochemical indicators of liver function, and regulating complement factors. The pathway of CYP/GST-ROS served as the shared regulatory axis and transformation site for DXT-M’s liver protective effects. These findings suggest that DXT-M has potential as a treatment for acute liver injury, highlighting the need for further research into its underlying molecular mechanisms as well as its complete material basis. This study’s main limitation is its focus on acute models; future research should include other liver diseases and clinical observation to evaluate its full potential. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1087 KB  
Article
Comparison of the Effects of Olive Tree and Date Palm Waste Biochar on Water Stress Measurements and Hydrophysical Properties of Sandy Soil
by Abdulaziz G. Alghamdi
Water 2025, 17(17), 2612; https://doi.org/10.3390/w17172612 - 3 Sep 2025
Viewed by 1021
Abstract
The impact of biochar pyrolyzed at 450 ± 10 °C and made from date palm (D) and olive tree (O) wastes on the hydrophysical characteristics of sandy soil was assessed in this study through a laboratory column experiment. Two different application rates ( [...] Read more.
The impact of biochar pyrolyzed at 450 ± 10 °C and made from date palm (D) and olive tree (O) wastes on the hydrophysical characteristics of sandy soil was assessed in this study through a laboratory column experiment. Two different application rates (wt/wt) were tested: 1% and 5%. The prepared biochars were added at 25 °C to the upper 10 cm layers of the soil columns. The outcome showed that, in comparison to O, D biochar possessed slightly less alkalinity and more salinity. The corresponding values for pH and EC in D and O biochars were 8.99 and 4.10 dS/m and 9.42 and 2.17 dS/m. Therefore, these biochars should be used cautiously as soil amendments in saline–sodic soils because of their excessive salinity, especially D biochar. On the other hand, they are safe to employ as amendments in acidic and non-saline soils. Cumulative evaporation (CE) decreased with all treatments, and the highest decrease of 10.2% (compared to control treatments after five cycles) was observed for D biochar and 5% application rate (D450, 5%). Moreover, the available water increased by 182%, 158%, 153%, and 29% for D450, 5%, D biochar and 1% application rate (D450, 1%), O biochar and 5% application rate (O450, 5%), and O biochar and 1% application rate (O450, 1%), respectively. The saturated hydraulic conductivity decreased by 94.8%, 87.0%, 76.6%, and 35.1% for D450, 5%, D450, 1%, O450, 5%, and O450, 1%, respectively. It was also found that the date palm biochar was more efficient than olive waste biochar in decreasing the cumulative infiltration and infiltration rate. Finally, this study showed the superiority of biochar prepared from date palm trees over that prepared from olive tree waste for improving the hydrophysical properties of sandy soil. Full article
Show Figures

Figure 1

16 pages, 2598 KB  
Article
Genetic Diversity and Molecular Analysis of Human Parainfluenza Virus Type 3 in Saint Petersburg (Russia) in 2017–2023: Emergence of a New Phylogenetic Cluster
by Oula Mansour, Artem V. Fadeev, Alexander A. Perederiy, Marina I. Zadirienko, Daria M. Danilenko, Dmitry A. Lioznov and Andrey B. Komissarov
Viruses 2025, 17(9), 1197; https://doi.org/10.3390/v17091197 - 30 Aug 2025
Viewed by 980
Abstract
Human parainfluenza viruses 3 (hPIV3) are important pathogens, responsible for acute respiratory tract diseases, especially in young children. Information on hPIV3 circulation and their diversity pattern in Russia is limited. The aim of this study was to perform a molecular and genetic characterization [...] Read more.
Human parainfluenza viruses 3 (hPIV3) are important pathogens, responsible for acute respiratory tract diseases, especially in young children. Information on hPIV3 circulation and their diversity pattern in Russia is limited. The aim of this study was to perform a molecular and genetic characterization of hPIV3 circulating in Saint Petersburg, Russia. From October 2017 to September 2023, 14,704 swabs were screened using real-time reverse transcription-PCR. A phylogenetic analysis of the complete hemagglutinin–neuraminidase (HN) gene was performed. Out of 1334 positive hPIV cases, hPIV3 was the most common subtype. Phylogenetic analysis of the studied and previously published HN sequences revealed four distinct genetic clusters, A, B, C, and D, with Cluster D being first delineated in this study. In addition, two newly subdivided genetic lineages, C5a and C5b, were documented. Phylogenetic analysis revealed that the analyzed Russian strains grouped into Cluster C and D; further subclusters C5a, C5b, C3b, C3e, and C3a. While three strains were classified within cluster D, the majority of isolates fell within subcluster C3a, followed by C5b. Taken together, these findings demonstrate the co-circulation of hPIV3 strains during the study period. This is the first study that describes the genetic and molecular aspects of hPIV3 circulating in Russia. Moreover, our results provide an up-to-date hPIV3 phylogenetic analysis. Full article
Show Figures

Figure 1

44 pages, 5528 KB  
Article
Development and Prediction of a Non-Destructive Quality Index (Qi) for Stored Date Fruits Using VIS–NIR Spectroscopy and Artificial Neural Networks
by Mahmoud G. Elamshity and Abdullah M. Alhamdan
Foods 2025, 14(17), 3060; https://doi.org/10.3390/foods14173060 - 29 Aug 2025
Viewed by 1646
Abstract
This study proposes a novel non-destructive approach to assessing and predicting the quality of stored date fruits using a composite quality index (Qi) modeled via visible–near-infrared (VIS–NIR) spectroscopy and artificial neural networks (ANNs). Two leading cultivars, Sukkary and Khlass, were stored for 12 [...] Read more.
This study proposes a novel non-destructive approach to assessing and predicting the quality of stored date fruits using a composite quality index (Qi) modeled via visible–near-infrared (VIS–NIR) spectroscopy and artificial neural networks (ANNs). Two leading cultivars, Sukkary and Khlass, were stored for 12 months using three temperature regimes (25 °C, 5 °C, and −18 °C) and five types of packaging. The samples were grouped into six moisture content categories (4.36–36.70% d.b.), and key physicochemical traits, namely moisture, pH, hardness, total soluble solids (TSSs), density, color, and microbial load, were used to construct a normalized, dimensionless Qi. Spectral data (410–990 nm) were preprocessed using second-derivative transformation and modeled using partial least squares regression (PLSR) and the ANNs. The ANNs outperformed PLSR, achieving the correlation coefficient (R2) values of up to 0.944 (Sukkary) and 0.927 (Khlass), with corresponding root mean square error of prediction (RMSEP) values of 0.042 and 0.049, and the relative error of prediction (REP < 5%). The best quality retention was observed in the dates stored at −18 °C in pressed semi-rigid plastic containers (PSSPCs), with minimal microbial growth and superior sensory scores. The second-order Qi model showed a significantly better fit (p < 0.05, AIC-reduced) over that of linear alternatives, capturing the nonlinear degradation patterns during storage. The proposed system enables real-time, non-invasive quality monitoring and could support automated decision-making in postharvest management, packaging selection, and shelf-life prediction. Full article
Show Figures

Figure 1

20 pages, 364 KB  
Review
CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events
by Gianfranco Cosenza, Andrea Fulgione, Emanuele D’Anza, Sara Albarella, Francesca Ciotola and Alfredo Pauciullo
Genes 2025, 16(9), 1011; https://doi.org/10.3390/genes16091011 - 27 Aug 2025
Viewed by 892
Abstract
Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) [...] Read more.
Splicing regulatory sequences are cornerstones for exon recognition. Mutations that modify them can severely compromise mRNA maturation and protein production. A wide range of mutations, including SNPs and InDels, can influence splicing regulatory signals either directly (e.g., altering canonical donor and acceptor dinucleotides) or indirectly (e.g., creating cryptic splice sites). CSN1S1 and CSN1S2 genes encode for the two main milk proteins, αs1 and αs2 caseins, respectively. They represent a remarkable and unique example of the possibilities for alternative splicing of individual genes, both due to the high number of alternative splices identified to date and for recognized allele-specific splicing events. To date, at least 13 alleles of CSN1S1 originating from mutations that affect canonical splice sites have been described in Bos taurus (CSN1S1 A, A1, and H), Ovis aries (E, H, and I), Capra hircus (D and G), Bubalus bubalis (E, F) and Camelidae (A, C, and D). Similarly, allele-specific splicing events have been described at the CSN1S2 locus in B. taurus. (CSN1S2 D), C. hircus (CSN1S2 D), B. bubalis (CSN1S2 B, B1, and B2), Equus asinus (CSN1S2 I B), and Camelidae. This review highlights that mutations affecting canonical splice sites, particularly donor sites, are significant sources of genetic variation impacting the casein production of the main dairy livestock species. Currently, a key limitation on this topic is the lack of detailed functional and proteomic studies. Future research should leverage advanced omics technologies like long-read transcriptomics and allele-resolved RNA sequencing to characterize these splicing mechanisms, guiding precision breeding strategies. Full article
39 pages, 8119 KB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 991
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

21 pages, 3984 KB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Cited by 1 | Viewed by 2326
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

14 pages, 1963 KB  
Article
K562 Chronic Myeloid Leukemia Cells as a Dual β3-Expressing Functional Cell Line Model to Investigate the Effects of Combined αIIbβ3 and αvβ3 Antagonism
by Amal A. Elsharif, Laurence H. Patterson, Steven D. Shnyder and Helen M. Sheldrake
Methods Protoc. 2025, 8(4), 73; https://doi.org/10.3390/mps8040073 - 5 Jul 2025
Cited by 1 | Viewed by 1813
Abstract
Several of the integrin family of cell adhesion receptors have been popular targets for the development of anticancer agents, but with little clinical success to date. Cancer cells usually express multiple redundant integrins; one hypothesis for the lack of efficacy of current antagonists [...] Read more.
Several of the integrin family of cell adhesion receptors have been popular targets for the development of anticancer agents, but with little clinical success to date. Cancer cells usually express multiple redundant integrins; one hypothesis for the lack of efficacy of current antagonists is their high selectivity for a single integrin. To address this, we developed a functional dual-β3-expressing cell model to investigate the effects of combined αIIbβ3/αvβ3 antagonism. We established that treating K562 chronic myeloid leukemia cells with 0.04 μM phorbol 12-myristate 13-acetate (PMA) for 40 h significantly upregulates functional αIIbβ3 and αvβ3 integrins. This optimized method provides a reliable platform for adhesion and detachment assays, enabling the characterization of dual integrin targeting strategies. Using this model, we demonstrate that combining αIIbβ3 and αvβ3 antagonists (GR144053 and cRGDfV) synergistically enhances inhibition of cell adhesion and promotes cell detachment compared to single-agent treatments. Our findings establish a reproducible approach for studying dual β3 integrin targeting, which can be used to investigate potential strategies for overcoming integrin redundancy in cancer therapeutics. Full article
(This article belongs to the Special Issue Current Methodology Advances in Cell Therapy Applications)
Show Figures

Figure 1

14 pages, 3131 KB  
Article
New Complex of Salinomycin with Hg(II)—Synthesis and Characterization
by Juliana Ivanova, Irena Pashkunova-Martic, Johannes Theiner, Nikola Burdzhiev, Peter Dorkov and Ivo Grabchev
Inorganics 2025, 13(7), 220; https://doi.org/10.3390/inorganics13070220 - 1 Jul 2025
Viewed by 1809
Abstract
Salinomycin is a polyether ionophorous antibiotic with promising antineoplastic properties. Published studies have revealed that the compound also exerts pronounced antidotal activity against cadmium (Cd) and lead (Pb) intoxications. It has been proven that salinomycin with Cd(II) forms a coordination compound of a [...] Read more.
Salinomycin is a polyether ionophorous antibiotic with promising antineoplastic properties. Published studies have revealed that the compound also exerts pronounced antidotal activity against cadmium (Cd) and lead (Pb) intoxications. It has been proven that salinomycin with Cd(II) forms a coordination compound of a composition [Cd(C42H69O11)2(H2O)2] and an octahedral molecular geometry, while the coordination compound of the antibiotic with Pb(II) has a square pyramidal structure and composition [Pb(C42H69O11)(NO3)]. To date, there is no published information about the ability of salinomycin to form complexes with the mercury ion (Hg(II)). Herein, we report, for the first time, a synthetic procedure for a complex compound of salinomycin with Hg(II). The coordination compound was characterized by a variety of methods, such as elemental analysis, attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), electrospray ionization–mass spectrometry (ESI-MS), powder X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), thermogravimetry with differential thermal analysis (TG-DTA), and thermogravimetry with mass spectrometry (TG-MS). The elemental analysis data revealed that the new compound is of the chemical composition [Hg(C42H69O11)(H2O)(OH)]. Based on the results from the spectral analyses, the most probable structure of the complex was proposed. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

19 pages, 2306 KB  
Article
Effect of Soil-Applied Metabolic Modulators on the Accumulation of Specialized Metabolites in Chelidonium majus L.
by Maria Stasińska-Jakubas, Sławomir Dresler, Maciej Strzemski, Magdalena Wójciak, Katarzyna Rubinowska and Barbara Hawrylak-Nowak
Molecules 2025, 30(13), 2782; https://doi.org/10.3390/molecules30132782 - 27 Jun 2025
Viewed by 743
Abstract
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still [...] Read more.
Various metabolic modulators have been widely used in recent years to increase the accumulation of desired secondary metabolites in medicinal plants, although most studies to date have focused on in vitro systems. Although simpler and cheaper, their potential application in vivo is still limited. Therefore, the aim of this study was to compare the effect of three chemically different elicitors (150 mg/L chitosan lactate—ChL; 10 mg/L selenium as selenite—Se; 100 mg/L salicylic acid—SA) applied to the soil substrate on some aspects of the secondary metabolism and physiological responses of Chelidonium majus L. Using HPLC-DAD, six isoquinoline alkaloids were identified and quantified in shoot extracts. LC-ESI-TOF-MS analysis confirmed the molecular identity of all target alkaloids, supporting the identification. The strongest stimulatory effect on the accumulation of protopine, berberine, and allocryptopine was observed with the Se and SA treatment, whereas ChL was less effective. In turn, the dominant alkaloids (coptisine and chelidonine) remained unaffected. There was also an increase in total phenolic compounds, but not in soluble flavonols. The elicitor treatments caused an increase in the antioxidant activity of the plant extracts obtained. Regardless of the metabolic modulator type, the strongest effect was generally observed on days 7 and 10 after application. No visual signs of toxicity and no effect on shoot biomass were found, although some elicitor-induced changes in the oxidative status (increased H2O2 accumulation and enhanced lipid peroxidation) and free proline levels in leaves were observed. We suggest that Se or SA can be applied to C. majus grown in a controlled pot culture to obtain high-quality raw material and extracts with increased contents of valuable specialized metabolites and enhanced antioxidant capacity. Full article
Show Figures

Graphical abstract

Back to TopTop