Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = 2K1C rat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 - 3 Aug 2025
Viewed by 126
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 403
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

22 pages, 17031 KiB  
Article
AZU1 as a DNA Methylation-Driven Gene: Promoting Oxidative Stress in High-Altitude Pulmonary Edema
by Qiong Li, Zhichao Xu, Qianhui Gong, Liyang Chen, Xiaobing Shen and Xiaowei Chen
Antioxidants 2025, 14(7), 835; https://doi.org/10.3390/antiox14070835 - 8 Jul 2025
Viewed by 392
Abstract
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA [...] Read more.
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA methylation chips, identifying key differentially methylated regions (DMRs). Targeted bisulfite sequencing (TBS) revealed significant abnormalities in DMRs of five genes, azurocidin 1 (AZU1), growth factor receptor bound protein 7 (GRB7), mannose receptor C-type 2 (MRC2), RUNX family transcription factor 3 (RUNX3), and septin 9 (SEPT9). The abnormal expression of AZU1 was validated using peripheral blood leukocytes from HAPE patients and normal controls, as well as rat lung tissue, indicating its potential importance in the pathogenesis of HAPE. To further validate the function of AZU1, we conducted experimental studies using a hypobaric hypoxia injury model in Human Umbilical Vein Endothelial Cells (HUVEC). The results showed that AZU1 was significantly upregulated under hypobaric hypoxia. Knocking down AZU1 mitigates the reduction in HUVEC proliferation, angiogenesis, and oxidative stress damage induced by acute hypobaric hypoxia. AZU1 induces cellular oxidative stress via the p38/mitogen-activated protein kinase (p38/MAPK) signaling pathway. This study is the first to elucidate the mechanism of AZU1 in HAPE via the p38/MAPK pathway, offering novel insights into the molecular pathology of HAPE and laying a foundation for future diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

14 pages, 4441 KiB  
Article
Vasodilator Effects of Quercetin 3-O-Malonylglucoside Are Mediated by the Activation of Endothelial Nitric Oxide Synthase and the Opening of Large-Conductance Calcium-Activated K+ Channels in the Resistance Vessels of Hypertensive Rats
by Maria Luiza Fidelis da Silva, Erdi Can Aytar and Arquimedes Gasparotto Junior
Molecules 2025, 30(13), 2867; https://doi.org/10.3390/molecules30132867 - 6 Jul 2025
Viewed by 383
Abstract
We used molecular docking as a computational tool to predict the binding affinities and interactions of quercetin 3-O-malonylglucoside (Q3MG) with vascular target proteins. First, the proteins 1M9M (human endothelial nitric oxide synthase; eNOS) and 6ND0 (human large-conductance voltage- and calcium-activated K+ channels; [...] Read more.
We used molecular docking as a computational tool to predict the binding affinities and interactions of quercetin 3-O-malonylglucoside (Q3MG) with vascular target proteins. First, the proteins 1M9M (human endothelial nitric oxide synthase; eNOS) and 6ND0 (human large-conductance voltage- and calcium-activated K+ channels; BKCa) were downloaded from the Protein Data Bank and submitted to molecular docking studies, revealing Q3MG binding affinities for both proteins. The vascular effect of Q3MG was investigated in the perfused mesenteric vascular beds (MVBs) of spontaneously hypertensive rats. In preparations with functional endothelium, Q3MG dose-dependently reduced the perfusion pressure in MVBs. Removal of the endothelium or inhibition of the nitric oxide synthase enzyme by L-NAME blocked the vasodilation induced by Q3MG. Perfusion with a physiological solution containing high KCl or the use of a non-selective blocker of K+ channels, as well as perfusion with iberiotoxin, completely abolished the vasodilatory effects of Q3MG. The data obtained suggest that the vascular effects of Q3MG involve the activation of the NO/cGMP pathway followed by the opening of BKCa. Full article
Show Figures

Figure 1

17 pages, 8884 KiB  
Article
Pharmacological Preconditioning with Diazoxide Upregulates HCN4 Channels in the Sinoatrial Node of Adult Rat Cardiomyocytes
by Wilibaldo Orea, Elba D. Carrillo, Ascención Hernández, Rubén Moreno, María C. García and Jorge A. Sánchez
Int. J. Mol. Sci. 2025, 26(13), 6062; https://doi.org/10.3390/ijms26136062 - 24 Jun 2025
Viewed by 391
Abstract
Cardioprotection against ischemia is achieved using openers of mitochondrial ATP-sensitive K+ (mitoKATP) channels such as diazoxide (DZX), leading to pharmacological preconditioning (PPC). We previously reported that PPC decreases the abundance of ventricular Cav1.2 channels, but PPC’s effects on other channels remain largely [...] Read more.
Cardioprotection against ischemia is achieved using openers of mitochondrial ATP-sensitive K+ (mitoKATP) channels such as diazoxide (DZX), leading to pharmacological preconditioning (PPC). We previously reported that PPC decreases the abundance of ventricular Cav1.2 channels, but PPC’s effects on other channels remain largely unexplored. In this study, we hypothesized that DZX regulates the expression of hyperpolarization-activated cyclic nucleotide potassium channel 4 (HCN4) channels in sinoatrial node cells (SANCs), the specialized cardiomyocytes that generate the heartbeat. DZX increased the heart rate in intact adult rats. Patch-clamp experiments revealed an increase in the magnitude of ionic currents through HCN4 channels, which was abolished by the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the selective mitoKATP channel inhibitor 5-hydroxydecanoate (5-HD). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot assays showed that DZX increased HCN4 channel expression at the mRNA and protein levels. Immunofluorescence analyses revealed that PPC increased HCN4 fluorescence, which was abolished by NAC. DZX increased nuclear translocation of c-Fos and decreased protein abundance of RE1 silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), suggesting the involvement of these factors. Our results suggest that PPC increases the heart rate by upregulating HCN4 channel expression through a mechanism involving c-Fos, REST, and ROS. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

20 pages, 5381 KiB  
Article
Role of Central Inflammatory and Oxidative Pathways in the Morphine Exacerbation of Cardiovascular Effects of Sepsis in Rats
by Mohamed Abdelnaby, Marwa Y. Sallam, Mai M. Helmy, Hanan M. El-Gowelli and Mahmoud M. El-Mas
Pharmaceuticals 2025, 18(6), 882; https://doi.org/10.3390/ph18060882 - 12 Jun 2025
Viewed by 599
Abstract
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified [...] Read more.
Background/Objectives: Sepsis remains one of the most serious and possibly fatal complications encountered in intensive care units. Considering the frequent use of narcotic analgesics in this setting, we investigated whether the cardiovascular and peripheral and central inflammatory features of sepsis could be modified by morphine. Methods: Rats were instrumented with femoral and intracisternal (i.c.) indwelling catheters and sepsis was induced by cecal ligation and puncture (CLP). Results: The i.v. administration of morphine (3 and 10 mg/kg) significantly and dose-dependently aggravated septic manifestations of hypotension and impaired cardiac autonomic activity, as reflected by the reductions in indices of heart rate variability (HRV). Cardiac contractility (dP/dtmax) was also reduced by morphine in septic rats. The morphine effects were mostly eliminated following (i) blockade of μ-opioid receptors by i.v. naloxone and (ii) inhibition of central PI3K, MAPK-ERK, MAPK-JNK, NADPH oxidase (NADPHox), or Rho-kinase (ROCK) by i.c. wortmannin, PD98059, SP600125, diphenyleneiodonium, and fasudil, respectively. Further, these pharmacologic interventions significantly reduced the heightened protein expression of toll-like receptor 4 (TLR4) and monocyte chemoattractant protein-1 (MCP1) in brainstem rostral ventrolateral medullary (RVLM), but not cardiac, tissues of CLP/morphine-treated rats. Conclusions: Morphine worsens cardiovascular and autonomic disturbances caused by sepsis through a mechanism mediated via μ-opioid receptors and upregulated central inflammatory, chemotactic, and oxidative signals. Clinical studies are warranted to re-affirm the adverse cardiovascular interaction between opioids and the septic challenge. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Opioids)
Show Figures

Graphical abstract

20 pages, 1996 KiB  
Article
Thermosensitive Mucoadhesive Intranasal In Situ Gel of Risperidone for Nose-to-Brain Targeting: Physiochemical and Pharmacokinetics Study
by Mahendra Singh, Sanjay Kumar, Ramachandran Vinayagam and Ramachandran Samivel
Pharmaceuticals 2025, 18(6), 871; https://doi.org/10.3390/ph18060871 - 11 Jun 2025
Viewed by 522
Abstract
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. [...] Read more.
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. Risperidone, a second-generation antipsychotic, has shown efficacy in managing both psychotic and mood-related symptoms. The mucoadhesive gel formulations help to prolong the residence time at the nasal absorption site, thereby facilitating the uptake of the drug. Methods: The poloxamer 407 (18.0% w/v), HPMC K100M and K15M (0.3–0.5% w/v), and benzalkonium chloride (0.1% v/v) were used as thermosensitive polymers, a mucoadhesive agent, and a preservative, respectively, for the development of in situ thermosensitive gel. The developed formulations were evaluated for various parameters. Results: The pH, gelation temperature, gelation time, and drug content were found to be 6.20 ± 0.026–6.37 ± 0.015, 34.25 ± 1.10–37.50 ± 1.05 °C, 1.65 ± 0.30–2.50 ± 0.55 min, and 95.58 ± 2.37–98.03 ± 1.68%, respectively. Furthermore, the optimized F3 formulation showed satisfactory gelling capacity (9.52 ± 0.513 h) and an acceptable mucoadhesive strength (1110.65 ± 6.87 dyne/cm2). Diffusion of the drug through the egg membrane depended on the formulation’s viscosity, and the F3 formulation explained the first-order release kinetics, indicating concentration-dependent drug diffusion with n < 0.45 (0.398) value, indicating the Fickian-diffusion (diffusional case I). The pharmacokinetic study was performed with male Wistar albino rats, and the F3 in situ thermosensitive risperidone gel confirmed significantly (p < 0.05) ~5.4 times higher brain AUC0–∞ when administered intranasally compared to the oral solution. Conclusions: Based on physicochemical, in vitro, and in vivo parameters, it can be concluded that in situ thermosensitive gel is suitable for administration of risperidone through the nasal route and can enhance patient compliance through ease of application and with less repeated administration. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

18 pages, 1224 KiB  
Article
Reduced Gene Dosage of the Psychiatric Risk Gene Cacna1c Is Associated with Impairments in Hypothalamic–Pituitary–Adrenal Axis Activity in Rats
by Anna L. Moon, Eleanor R. Mawson, Patricia Gasalla, Lawrence S. Wilkinson, Dominic M. Dwyer, Jeremy Hall and Kerrie L. Thomas
Int. J. Mol. Sci. 2025, 26(12), 5547; https://doi.org/10.3390/ijms26125547 - 10 Jun 2025
Viewed by 453
Abstract
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present [...] Read more.
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present evidence that rats with a reduced gene dosage of Cacna1c have increased basal corticosterone levels in the periphery and reduced the expression of Nr3c1 encoding the glucocorticoid receptor in the hippocampus and hypothalamus. These results are consistent, with an effect of Cacna1c dosage on hypothalamus–pituitary–adrenal (HPA) axis function. Heterozygous Cacna1c rats had lower levels of the histone markers H3K4me3 and H3K27acat exon 17 of the Nr3c1 gene. These histone modifications are typically linked to increased gene expression, but here were not associated with changes in the expression of exon 17 variants under non-stress conditions. Heterozygous Cacna1c rats additionally show increased anxiety behaviours. These results support an association of Cacna1c heterozygosity with the altered activity of the HPA axis and function in the resting state, and this may be a predisposing mechanism that contributes to the increased risk of psychiatric disorders with stress. Full article
Show Figures

Figure 1

15 pages, 1455 KiB  
Article
Some Properties of the C. elegans Multicopper Oxidase F21D5.3, an Ortholog of Human Ceruloplasmin
by Polina D. Samuseva, Aleksandra A. Mekhova-Caramalac, Federico Catalano, Anna D. Shchukina, Sofia A. Baikina, Daria N. Magazenkova, Ludmila V. Puchkova and Ekaterina Yu. Ilyechova
Int. J. Mol. Sci. 2025, 26(10), 4776; https://doi.org/10.3390/ijms26104776 - 16 May 2025
Viewed by 465
Abstract
This study identified an oxidase-positive protein in the plasma membrane fraction of the C. elegans N2 strain. The protein with a molecular weight of approximately 85 kDa reacted with antibodies against human and mouse, but not rat, ceruloplasmin and exhibited oxidase activity. Bioinformatic [...] Read more.
This study identified an oxidase-positive protein in the plasma membrane fraction of the C. elegans N2 strain. The protein with a molecular weight of approximately 85 kDa reacted with antibodies against human and mouse, but not rat, ceruloplasmin and exhibited oxidase activity. Bioinformatic analysis revealed that the F21D5.3 protein possesses four copper-binding sites, similar to those in other multicopper oxidases (MCOs), and plastocyanin-like domains characteristic of MCOs. However, neither an iron-binding domain nor ferroxidase activity, typical features of MCOs, were detected through in silico analysis and or in-gel assays. Despite the absence of ferroxidase activity, these findings suggest that the protein may be the product of the F21D5.3 gene, an ortholog of MCOs in C. elegans. Heat map analysis indicated F21D5.3 expression in the entero-rectal valve cells and both the anterior and posterior intestines. Among the genes associated with copper transport, only cua-1 exhibited a similar expression pattern. In the C. elegans cua-1H828Q strain, which mimics a mutation in human ATP7B linked to Wilson’s disease (WD), oxidase activity was also observed. Notably, both strains showed reduced oxidase activity when cultured with silver nanoparticles (AgNPs). These findings highlight the potential of the cua-1H828Q strain as a model for studying copper and iron metabolism and for developing therapeutic strategies for WD. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

17 pages, 1679 KiB  
Article
Peripheral Antinociception Induced by Carvacrol in the Formalin Test Involves the Opioid Receptor-NO-cGMP-K+ Channel Pathway
by Mario I. Ortiz, Raquel Cariño-Cortés, Eduardo Fernández-Martínez, Victor Manuel Muñoz-Pérez, Gilberto Castañeda-Hernández and Martha Patricia González-García
Metabolites 2025, 15(5), 314; https://doi.org/10.3390/metabo15050314 - 7 May 2025
Viewed by 529
Abstract
Background/Objectives: Carvacrol is a naturally occurring phenolic monoterpene that is one of the main constituents of the essential oils of oregano (Origanum vulgare) and other herbs. Carvacrol has anti-inflammatory and antinociceptive effects. Carvacrol can activate and inhibit several second messengers and [...] Read more.
Background/Objectives: Carvacrol is a naturally occurring phenolic monoterpene that is one of the main constituents of the essential oils of oregano (Origanum vulgare) and other herbs. Carvacrol has anti-inflammatory and antinociceptive effects. Carvacrol can activate and inhibit several second messengers and ionic channels at the systemic level. However, there is no evidence of the peripheral antinociception of carvacrol and its mechanism of action. This study was designed to determine whether the opioid receptor-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-K+ channel pathway is involved in the local antinociception of carvacrol. Methods: Wistar rats were injected with 1% formalin subcutaneously on the dorsal surface of the right hind paw with the vehicle or carvacrol (100–300 µg/paw). To determine whether the opioid receptor-NO-cGMP-K+ channel pathway and a biguanide-dependent mechanism are responsible for the local antinociception induced by carvacrol, the effect of the injection (10 min before the 1% formalin injection) with the corresponding vehicles, metformin, naltrexone, NG-L-nitro-arginine methyl ester (L-NAME), 1 H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), and K+ channel blockers on the antinociception induced by local carvacrol (300 µg/paw) was determined. Results: In both phases of the formalin test, carvacrol produced antinociception. Naltrexone, metformin, L-NAME, ODQ, glibenclamide and glipizide (both ATP-sensitive K+ channel blockers), tetraethylammonium and 4-aminopyridine (voltage-gated K+ channel blockers), and apamin and charybdotoxin (Ca2+-activated K+ channel blockers) reversed the carvacrol-induced peripheral antinociception. Conclusions: The local peripheral administration of carvacrol produced significant antinociception and activated the opioid receptor-NO-cGMP-K+ channel pathway. Full article
Show Figures

Figure 1

22 pages, 13635 KiB  
Article
Pericarpium Trichosanthis Injection Protects Isoproterenol-Induced Acute Myocardial Ischemia via Suppressing Inflammatory Damage and Apoptosis Pathways
by Zizheng Wu, Xing Chen, Jiahao Ye, Xiaoyi Wang and Zhixi Hu
Biomolecules 2025, 15(5), 618; https://doi.org/10.3390/biom15050618 - 24 Apr 2025
Viewed by 761
Abstract
This research proposes to systematically investigate the cardioprotective mechanisms of Pericarpium Trichosanthis injection (PTI) against acute myocardial ischemia through an integrated approach combining ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) constituent profiling, UNIFI database-assisted component identification, network pharmacology-guided target prediction, molecular docking [...] Read more.
This research proposes to systematically investigate the cardioprotective mechanisms of Pericarpium Trichosanthis injection (PTI) against acute myocardial ischemia through an integrated approach combining ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) constituent profiling, UNIFI database-assisted component identification, network pharmacology-guided target prediction, molecular docking verification, and in vivo experimental validation. The multimodal methodology is designed to comprehensively uncover the therapeutic benefits and molecular pathways underlying this traditional Chinese medicine formulation. Methods: UPLC-Q-TOF/MS and the UNIFI database were used in conjunction with a literature review to screen and validate the absorbed components of PTI. Using network pharmacology, we constructed protein-protein interaction (PPI) networks for pinpointing prospective therapeutic targets. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify potential signaling pathways. In vivo experiments were conducted to investigate the mechanisms by which PTI ameliorated isoproterenol-induced myocardial injury in rats. All animal experiments have adhered to ARRIVE guidelines. Results: UPLC-Q-TOF/MS revealed 11 core active components in PTI. Network pharmacology prioritization identified pseudoaspidin, ciryneol C, cynanoside M, daurinol, and n-butyl-β-D-fructopyranoside as central bioactive constituents within the compound-target interaction network. Topological analysis of the protein interactome highlighted AKT1, EGFR, MMP9, SRC, PTGS2, STAT3, BCL2, CASP3, and MAPK3 as the most interconnected nodes with the highest betweenness centrality. Pathway enrichment analysis established the PI3K/Akt signaling cascade as the principal mechanistic route for PTI’s cardioprotective effects. Molecular docking simulations demonstrated high-affinity interactions between characteristic components (e.g., cynanoside M, darutigenol) and pivotal targets including PTGS2, MAPK3, CASP3, and BCL2. In vivo investigations showed PTI treatment markedly attenuated myocardial tissue degeneration and collagen deposition (p < 0.05), normalized electrocardiographic ST-segment deviations, and suppressed pro-inflammatory cytokine production (IL-6, TNF-α). The formulation concurrently reduced circulating levels of cardiac injury indicators (LDH, cTnI) and oxidative stress parameters (ROS, MDA), Regarding apoptosis regulation, PTI reduced Bax, caspase-3, and caspase-9, while elevating Bcl-2 (p < 0.05), effectively inhibiting myocardial cell apoptosis with all therapeutic outcomes reaching statistical significance. These findings highlight PTI’s protective effects against myocardial injury through multi-target modulation of inflammation, oxidation, and apoptosis. Conclusions: PTI exerts its therapeutic effects in treating acute myocardial ischemia by regulating and suppressing inflammatory responses, and inhibiting cardiomyocyte apoptosis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 5127 KiB  
Article
Antipyretic Mechanism of Bai Hu Tang on LPS-Induced Fever in Rat: A Network Pharmacology and Metabolomics Analysis
by Ke Pei, Yuchen Wang, Wentao Guo, He Lin, Zhe Lin and Guangfu Lv
Pharmaceuticals 2025, 18(5), 610; https://doi.org/10.3390/ph18050610 - 23 Apr 2025
Viewed by 667
Abstract
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg [...] Read more.
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg for half an hour, body temperature was measured at hourly intervals for 9 consecutive hours. Then, serum levels of TNF-α, IL-1β, and IL-6, and serum and cerebrospinal fluid (CSF) levels of AVP, cAMP, PGE2, Ca and CRH, and the remaining sera were used for metabolomics. These were then combined with network pharmacology methodology to further analyse the antipyretic effect of BHT and then dock key targets with differential components. Results: Administration of BHT to LPS-induced febrile rats significantly reduced elevated body temperature, TNF-α, IL-1β and IL-6 levels, but serum and CSF levels of AVP, cAMP, PGE2, Ca2+ and CRH were significantly elevated compared to the control group. Network pharmacological analyses indicated that the putative functional targets of BHT were regulation of immune responses, associated protein binding and inflammatory responses, and fine-tuning of phosphatase binding and activation of signalling pathways such as MAPK, PI3K, AKT, NF-kB, cAMP and inflammatory pathways. Metabolomic analysis showed that the antipyretic effect of BHT and its mechanism are likely to be involved in fatty acid metabolism, bile acid metabolism and amino acid metabolism in the organism, with L-arginine, glycyrrhetinic acid and N-acetylpentraxine as the main differential metabolites that play a significant role in heat recovery. The results also showed better docking of glycyrrhetinic acid with TNF-α, IL-6R, PTGS2. Conclusions: BHT provides a valuable adjunct to traditional clinical antipyretics by improving body temperature and metabolism and reducing inflammation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 2354 KiB  
Article
1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4-d]pyridazinone Alleviate TNBS-Induced Colitis and Exhibit No Significant Testicular Toxicity
by Anna Merwid-Ląd, Piotr Ziółkowski, Beata Nowak, Piotr Świątek, Łukasz Szczukowski, Joanna Kwiatkowska, Katarzyna Piasecka, Adam Szeląg and Marta Szandruk-Bender
Pharmaceuticals 2025, 18(4), 546; https://doi.org/10.3390/ph18040546 - 8 Apr 2025
Viewed by 734
Abstract
Background/Objectives: Inflammatory bowel disease significantly impairs the patient’s quality of life. In young individuals, both the disease and the drugs used for the treatment may impact fertility. Our study aimed to assess the action of new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone on the rat [...] Read more.
Background/Objectives: Inflammatory bowel disease significantly impairs the patient’s quality of life. In young individuals, both the disease and the drugs used for the treatment may impact fertility. Our study aimed to assess the action of new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone on the rat testes in a model of TNBS-induced colitis in rats. Methods: In the current study, testes from eight randomly chosen rats were taken from each of the following groups: the control group (K), the colitis group (C), and the groups receiving compounds 7b, 10b, and 13b in higher doses (20 mg/kg). Results: Colitis did not affect the testicular index (expressed as a percentage of the body weight), but in group 13b, this parameter was significantly higher than in group K. No significant differences between groups were noticed in malondialdehyde, superoxide dismutase, interleukin-1, or metalloproteinase 9 levels. In the colitis group, lactate dehydrogenase activity in the testes was not increased; however, the administration of compound 10b significantly increased this parameter when compared to both groups K and C. Histological evaluation also did not reveal abnormalities, and the morphology of the testicular tissues was comparable in all groups. Conclusions: The results may suggest that the new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone did not exert significant testicular toxicity. Full article
Show Figures

Figure 1

21 pages, 10060 KiB  
Article
The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure
by Yara Knany, Safa Kinaneh, Emad E. Khoury, Yaniv Zohar, Zaid Abassi and Zaher S. Azzam
Int. J. Mol. Sci. 2025, 26(7), 3374; https://doi.org/10.3390/ijms26073374 - 4 Apr 2025
Viewed by 607
Abstract
Alveolar active sodium transport is essential for clearing edema from airspaces, in a process known as alveolar fluid clearance (AFC). Although it has been reported that atrial natriuretic peptide (ANP) attenuates AFC, little is known about the underlying molecular effects of natriuretic peptides [...] Read more.
Alveolar active sodium transport is essential for clearing edema from airspaces, in a process known as alveolar fluid clearance (AFC). Although it has been reported that atrial natriuretic peptide (ANP) attenuates AFC, little is known about the underlying molecular effects of natriuretic peptides (NPs). Therefore, we examined the contribution of NPs to AFC and their effects as mediators of active sodium transport. By using the isolated liquid-filled lungs model, we investigated the effects of NPs on AFC. The expression of NPs, Na+, K+-ATPase, and Na+ channels was assessed in alveolar epithelial cells. Congestive heart failure (CHF) was induced by using the aortocaval fistula model. ANP and brain NP (BNP) significantly reduced AFC rate from 0.49 ± 0.02 mL/h in sham rats to 0.26 ± 0.013 and 0.19 ± 0.005 in ANP and BNP-treated groups, respectively. These effects were mediated by downregulating the active Na+ transport components in the alveolar epithelium while enhancing the ubiquitination and degradation of αENaC in the lungs, as reflected by increased levels of Nedd4-2. In addition, AFC was reduced in compensated CHF rats treated with ANP, while in decompensated CHF, ANP partially restored AFC. In conclusion, NPs regulate AFC in health and CHF. This research could help optimize pharmacological treatments for severe CHF. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Lung Health and Disease)
Show Figures

Figure 1

18 pages, 3515 KiB  
Article
Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy
by Daisuke Uta, Hideki Nakamura, Kengo Maruo, Kanoko Matsumura, Yohei Usami and Toshiaki Kume
Int. J. Mol. Sci. 2025, 26(7), 3329; https://doi.org/10.3390/ijms26073329 - 3 Apr 2025
Viewed by 772
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant adverse event with unclear mechanisms and limited treatment alternatives. This study aimed to investigate the efficacy of two alkalizing agents, a mixture of potassium citrate and sodium citrate (K/Na citrate) or sodium bicarbonate (NaHCO3), [...] Read more.
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant adverse event with unclear mechanisms and limited treatment alternatives. This study aimed to investigate the efficacy of two alkalizing agents, a mixture of potassium citrate and sodium citrate (K/Na citrate) or sodium bicarbonate (NaHCO3), in preventing and treating paclitaxel (PTX)-induced mechanical allodynia in rodents. The results from rodent models demonstrated that repeated prophylactic administration of K/Na citrate or NaHCO3 could inhibit the development of PTX-induced mechanical allodynia. Moreover, K/Na citrate was effective in preventing the PTX-induced exacerbation of mechanical allodynia, even when treatment was initiated immediately after the onset of allodynia. K/Na citrate also reduced the levels of the plasma complement component anaphylatoxin C3a in a PTX-induced CIPN rat model. Complement activation, resulting in the production of C3a, has been implicated in the pathogenesis of this model. Additionally, pretreatment with Na citrate significantly prevented the reduction in neurite outgrowth caused by PTX. Furthermore, K/Na citrate inhibited spontaneous and mechanical stimuli-induced firing in spinal dorsal horn neurons. These findings indicate that K/Na citrate may regulate the development of PTX-induced mechanical allodynia by modulating complement activation and providing neuroprotection against PTX-induced peripheral nerve injury. This study implies that alkalization could help prevent PTX-induced peripheral neuropathy and mitigate its exacerbation. Full article
Show Figures

Graphical abstract

Back to TopTop