Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ε182W excess

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2586 KB  
Review
A Review of the Lunar 182Hf-182W Isotope System Research
by Zhen Yang, Guiqin Wang, Yuming Xu, Yuling Zeng and Zhaofeng Zhang
Minerals 2022, 12(6), 759; https://doi.org/10.3390/min12060759 - 15 Jun 2022
Cited by 4 | Viewed by 4048
Abstract
In recent years, the extinct nuclide 182Hf-182W system has been developed as an essential tool to date and trace the lunar origin and evolution. Despite a series of achievements, controversies and problems exist. As a review, this paper details the [...] Read more.
In recent years, the extinct nuclide 182Hf-182W system has been developed as an essential tool to date and trace the lunar origin and evolution. Despite a series of achievements, controversies and problems exist. As a review, this paper details the application principles of the 182Hf-182W isotope system and summarizes the research development on W isotopes of the Moon. A significant radiogenic ε182W excess of 0.24 ± 0.01 was found in the lunar mantle, leading to heated debates. There are three main explanations for the origin of the excess, including (1) radioactive origin; (2) the mantle of the Moon-forming impactor; and (3) disproportional late accretion to the Earth and the Moon. Debates on these explanations have revealed different views on lunar age. The reported ages of the Moon are mainly divided into two views: an early Moon (30–70 Ma after the solar system formation); and a late Moon (>70 Ma after the solar system formation). This paper discusses the possible effects on lunar 182W composition, including the Moon-forming impactor, late veneer, and Oceanus Procellarum-forming projectile. Finally, the unexpected isotopic similarities between the Earth and Moon are discussed. Full article
(This article belongs to the Special Issue Meteorites and Their Components by Using Isotope Systems)
Show Figures

Figure 1

15 pages, 20978 KB  
Article
Phase Relations in the FeO-Fe3C-Fe3N System at 7.8 GPa and 1350 °C: Implications for Oxidation of Native Iron at 250 km
by Aleksei N. Kruk, Alexander G. Sokol, Yurii V. Seryotkin and Yuri N. Palyanov
Minerals 2020, 10(11), 984; https://doi.org/10.3390/min10110984 - 4 Nov 2020
Cited by 2 | Viewed by 3942
Abstract
Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3 [...] Read more.
Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3N system. The results of experiments at 7.8 GPa and 1350 °C show that oxygen increase in the system to > 0.5 wt % provides the stability of FeO and leads to changes in the phase diagram: the Fe3C, L, and Fe3N single-phase fields change to two-phase ones, while the Fe3C + L and Fe3N + L two-phase fields become three-phase. Сarbon in iron carbide (Fe3C, space group Pnma) is slightly below the ideal value and nitrogen is below the EMPA (Electron microprobe analysis) detection limit. Iron nitride (ε-Fe3N, space group P63/mmc) contains up to 2.7 wt % С and 4.4 wt % N in equilibrium with both melt and wüstite but 2.1 wt % С and 5.4 wt % N when equilibrated with wüstite alone. Impurities in wüstite (space group Fmm) are within the EMPA detection limit. The contents of oxygen, carbon, and nitrogen in the metal melt equilibrated with different iron compounds are within 0.5–0.8 wt % O even in FeO-rich samples; 3.8 wt % C and 1.2 wt % N for Fe3C + FeO; and 2.9 wt % C and 3.5 wt % N for Fe3N + FeO. Co-crystallization of Fe3C and Fe3N from the O-bearing metal melt is impossible because the fields of associated C- and N-rich compounds are separated by that of FeO + L. Additional experiments with excess oxygen added to the system show that metal melt, which is the main host of carbon and nitrogen in the metal-saturated (~0.1 wt %) mantle at a depth of ~250 km and a normal heat flux of 40 mW/m2, has the greatest oxygen affinity. Its partial oxidation produces FeO and causes crystallization of iron carbides (Fe3C and Fe7C3) and increases the nitrogen enrichment of the residual melt. Thus, the oxidation of metal melt in the mantle enriched in volatiles may lead to successive crystallization of iron carbides and nitrides. In these conditions, magnetite remains unstable till complete oxidation of iron carbide, iron nitride, and the melt. Iron carbides and nitrides discovered as inclusions in mantle diamonds may result from partial oxidation of metal melt which originally contained relatively low concentrations of carbon and nitrogen. Full article
Show Figures

Figure 1

Back to TopTop