Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,030)

Search Parameters:
Keywords = β CD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1504 KiB  
Article
Systemic Sclerosis with Interstitial Lung Disease: Identification of Novel Immunogenetic Markers and Ethnic Specificity in Kazakh Patients
by Lina Zaripova, Abay Baigenzhin, Zhanar Zarkumova, Zhanna Zhabakova, Alyona Boltanova, Maxim Solomadin and Alexey Pak
Epidemiologia 2025, 6(3), 41; https://doi.org/10.3390/epidemiologia6030041 - 6 Aug 2025
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: to investigate autoantibodies, cytokines, and genetic markers in SSc-ILD through a systematic review and analysis of a Kazakh cohort of SSc-ILD patients. Methods: A PubMed search over the past 10 years was performed with “SSc-ILD”, “autoantibodies”, “cytokines”, and “genes”. Thirty patients with SSc were assessed for lung involvement, EScSG score, and modified Rodnan skin score. IL-6 was measured by ELISA, antinuclear factor on HEp-2 cells by indirect immunofluorescence, and specific autoantibodies by immunoblotting. Genetic analysis was performed using a 120-gene AmpliSeq panel on the Ion Proton platform. Results: The literature review identified 361 articles, 26 addressed autoantibodies, 20 genetic variants, and 12 cytokine profiles. Elevated levels of IL-6, TGF-β, IL-33, and TNF-α were linked to SSc. Based on the results of the systemic review, we created a preliminary immunogenic panel for SSc-ILD with following analysis in Kazakh patients with SSc (n = 30). Fourteen of them (46.7%) demonstrated signs of ILD and/or lung hypertension, with frequent detection of antibodies such as Scl-70, U1-snRNP, SS-A, and genetic variants in SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, and CD40 genes. Conclusions: Current research confirmed the presence of the broad range of autoantibodies and variations in IRAK1, TNFAIP3, SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, CD40 genes in of Kazakhstani cohort of SSc-ILD patients. Full article
Show Figures

Figure 1

17 pages, 1788 KiB  
Article
Impact of Major Pelvic Ganglion Denervation on Prostate Histology, Immune Response, and Serum Prolactin and Testosterone Levels in Rats
by Pabeli Saraí Becerra-Romero, Cynthia Fernández-Pomares, Juan Carlos Rodríguez-Alba, Jorge Manzo, Gonzalo E. Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Genaro Alfonso Coria-Ávila and Maria Elena Hernández-Aguilar
Immuno 2025, 5(3), 33; https://doi.org/10.3390/immuno5030033 - 6 Aug 2025
Abstract
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, [...] Read more.
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, and cytokines in rats. Male Wistar rats (300–350 g) were divided into groups receiving bilateral axotomy of the hypogastric nerve, the pelvic nerve, or both, alongside with a sham-operated control. After 15 days, the animals were killed, and prostate tissue was dissociated in DMEM medium containing DNase I and collagenase. The dissociated cells were stained with fluorochrome-conjugated antibodies, and cell characterization was performed using a flow cytometer. Hematoxylin and eosin (H&E) staining was used to analyze histological characteristics, while testosterone, prolactin, and interleukin levels were measured via ELISA. Histological analysis revealed inflammatory atypical hypertrophy e hiperplasia. Immunological assessments demonstrated increased leukocytes, T lymphocytes (CD4+ and CD8+), B lymphocytes, and macrophages following double nerve axotomy. Serum analyses showed elevated pro-inflammatory cytokines IL-1β, IL-6, and IFN-γ, as well as anti-inflammatory IL-10, in denervated animals. Hormonal assessments revealed significant increases in serum prolactin and testosterone levels after double axotomy. Loss of neural control may promote pathological prostate changes via inflammation and hormonal dysregulation, offering insights into neuroimmune and neuroendocrine mechanisms underlying prostate pathologies. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

24 pages, 472 KiB  
Article
The Effect of Workplace Mobbing on Positive and Negative Emotions: The Mediating Role of Psychological Resilience Among Nurses
by Aristotelis Koinis, Ioanna V. Papathanasiou, Ioannis Kouroutzis, Iokasti Papathanasiou, Dimitra Anagnostopoulou, Ioannis Androutsakos, Maria Papandreou, Ioulia Katsaiti, Nikolaos Tsioumas, Melpomeni Mourtziapi, Pavlos Sarafis and Maria Malliarou
Healthcare 2025, 13(15), 1915; https://doi.org/10.3390/healthcare13151915 - 5 Aug 2025
Abstract
Background: Workplace mobbing is a widespread phenomenon with serious psychological and emotional consequences on employees’ emotional well-being. Psychological resilience has been identified as a potential protective factor against such adverse outcomes. Aim: This study investigates the relationship between workplace mobbing and emotional well-being, [...] Read more.
Background: Workplace mobbing is a widespread phenomenon with serious psychological and emotional consequences on employees’ emotional well-being. Psychological resilience has been identified as a potential protective factor against such adverse outcomes. Aim: This study investigates the relationship between workplace mobbing and emotional well-being, as expressed through positive and negative affect, and examines the mediating role of psychological resilience in this association. Methods: Ninety nurses participated in this cross-sectional study. Data were collected using the Connor–Davidson Resilience Scale (CD-RISC), the Workplace Psychologically Violent Behaviors (WPVB) scale, and the Positive and Negative Affect Schedule (PANAS). Statistical analyses included correlation, multiple regression, and mediation using bootstrapped confidence intervals. Results: Resilience was strongly associated with positive affect (r = 0.74, p < 0.001) and inversely with negative affect (r = −0.46, p < 0.001). Mobbing was significantly related to increased negative affect (β = 0.12, p < 0.001) but not to positive affect. Resilience emerged as the strongest predictor of emotional outcomes and partially mediated the relationship between “Attack on professional role” and negative affect. Conclusions: Psychological resilience plays a key protective role in moderating the emotional impact of workplace mobbing. Enhancing resilience in healthcare professionals may mitigate the negative emotional effects of mobbing, although it does not fully buffer against all its consequences. Full article
(This article belongs to the Special Issue Well-Being of Healthcare Professionals: New Insights After COVID-19)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

17 pages, 3172 KiB  
Article
The Effect of Ketamine on the Immune System in Patients with Treatment-Resistant Depression
by Łukasz P. Szałach, Klaudia Ciesielska-Figlon, Agnieszka Daca, Wiesław J. Cubała and Katarzyna A. Lisowska
Int. J. Mol. Sci. 2025, 26(15), 7500; https://doi.org/10.3390/ijms26157500 - 3 Aug 2025
Viewed by 183
Abstract
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 [...] Read more.
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 mg/kg iv ketamine. Blood was sampled at baseline, 4 h, and 24 h to analyze T-cell phenotypes (CD28, CD69, CD25, CD95, HLA-DR) and serum cytokines (IL-6, IL-8, IL-10, TNF-α, IL-1β, IL-12p70). In vitro, PBMCs from TRD patients and controls were exposed to low (185 ng/mL) and high (300 ng/mL) ketamine doses. Ketamine induced a transient increase in total T cells and CD4+CD25+ and CD4+CD28+ subsets at 4 h, followed by a reduction in CD4+ and an increase in CD8+ T cells at 24 h, decreasing the CD4+/CD8+ ratio. Activation markers (CD4+CD69+, CD4+HLA-DR+, CD8+CD25+, CD8+HLA-DR+) declined at 24 h. Serum IL-10 increased, IL-6 decreased, and IL-8 levels—initially elevated—showed a sustained reduction. In vitro, high-dose ketamine enhanced the proliferation of TRD CD4+ T cells and dose-dependent IL-8 and IL-6 secretion from activated cells. Ketamine induces rapid, transient immune changes in TRD, including reduced T-cell activation and cytokine modulation. A sustained IL-8 decrease suggests anti-inflammatory effects and potential as a treatment-response biomarker. Full article
Show Figures

Figure 1

14 pages, 533 KiB  
Article
Immunorecovered but Exhausted: Persistent PD-1/PD-L1 Expression Despite Virologic Suppression and CD4 Recovery in PLWH
by Bogusz Aksak-Wąs, Karolina Skonieczna-Żydecka, Miłosz Parczewski, Rafał Hrynkiewicz, Filip Lewandowski, Karol Serwin, Kaja Mielczak, Adam Majchrzak, Mateusz Bruss and Paulina Niedźwiedzka-Rystwej
Biomedicines 2025, 13(8), 1885; https://doi.org/10.3390/biomedicines13081885 - 3 Aug 2025
Viewed by 177
Abstract
Background/Objectives: While ART effectively suppresses HIV viremia, many PLWH exhibit persistent immune dysfunction. This study aimed to assess immune recovery and immune exhaustion (PD-1/PD-L1 expression) in newly diagnosed versus long-term ART-treated individuals. Methods: We analyzed 79 PLWH: 52 newly diagnosed individuals (12-month follow-up) [...] Read more.
Background/Objectives: While ART effectively suppresses HIV viremia, many PLWH exhibit persistent immune dysfunction. This study aimed to assess immune recovery and immune exhaustion (PD-1/PD-L1 expression) in newly diagnosed versus long-term ART-treated individuals. Methods: We analyzed 79 PLWH: 52 newly diagnosed individuals (12-month follow-up) and 27 long-term-treated patients (Ukrainian refugees). Flow cytometry was used to evaluate CD4+ and CD8+ counts, the CD4+/CD8+ ratio, and PD-1/PD-L1 expression on CD3+, CD4+, and CD19+ lymphocytes. ART regimen and HIV subtype were included as covariates in linear regression models. Results: At 12 months, CD4+ counts were similar between groups (median 596.5 vs. 621 cells/μL, p = 0.22), but newly diagnosed patients had higher CD8+ counts (872 vs. 620 cells/μL, p = 0.028) and a lower CD4+/CD8+ ratio (0.57 vs. 1.05, p = 0.0027). Immune exhaustion markers were significantly elevated in newly diagnosed individuals: CD4+ PD-1+ T cells (24.4% vs. 3.85%, p = 0.0002) and CD3+ PD-1+ T cells (27.3% vs. 12.35%, p < 0.0001). Linear regression confirmed group membership independently predicted higher CD3+ (β = +21.92, p < 0.001), CD4+ (β = +28.87, p < 0.0001), and CD19+ (β = +8.73, p = 0.002) percentages. Lipid parameters and SCORE2 did not differ significantly. Conclusions: Despite virologic suppression and CD4+ recovery, immune exhaustion markers remain elevated in newly diagnosed PLWH, suggesting incomplete immune normalization. Traditional parameters (CD4+ count and CD4+/CD8+ ratio) may not fully capture immune status, warranting broader immunologic profiling in HIV care. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Infectious Diseases)
Show Figures

Figure 1

20 pages, 4612 KiB  
Article
Effect of a Gluten-Free Diet on the Intestinal Microbiota of Women with Celiac Disease
by M. Mar Morcillo Serrano, Paloma Reche-Sainz, Daniel González-Reguero, Marina Robas-Mora, Rocío de la Iglesia, Natalia Úbeda, Elena Alonso-Aperte, Javier Arranz-Herrero and Pedro A. Jiménez-Gómez
Antibiotics 2025, 14(8), 785; https://doi.org/10.3390/antibiotics14080785 - 2 Aug 2025
Viewed by 204
Abstract
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, [...] Read more.
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, functional, and resistance profiling to evaluate the gut microbiota of women with CD on a GFD. Methods: To evaluate the long-term impact of a GFD, this study analyzed the gut microbiota of 10 women with CD on a GFD for over a year compared to 10 healthy controls with unrestricted diets. Taxonomic diversity (16S rRNA gene sequencing and the analysis of α and β-diversity), metabolic functionality (Biolog EcoPlates®), and antibiotic resistance profiles (Cenoantibiogram) were assessed. Results: Metagenomic analysis revealed no significant differences in taxonomic diversity but highlighted variations in the abundance of specific bacterial genera. Women with CD showed increased proportions of Bacteroides, Streptococcus, and Clostridium, associated with inflammation, but also elevated levels of beneficial genera such as Roseburia, Oxalobacter, and Paraprevotella. Despite no significant differences in metabolic diversity, higher minimum inhibitory concentrations (MICs) in women in the healthy control group suggest that dietary substrates in unrestricted diets may promote the proliferation of fast-growing bacteria capable of rapidly developing and disseminating antibiotic resistance mechanisms. Conclusions: These findings indicate that prolonged adherence to a GFD in CD supports remission of gut dysbiosis, enhances microbiota functionality, and may reduce the risk of antibiotic resistance, emphasizing the importance of dietary management in CD. Full article
(This article belongs to the Special Issue Antibiotic Resistance: A One-Health Approach, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 2376 KiB  
Review
Hypertension in People Exposed to Environmental Cadmium: Roles for 20-Hydroxyeicosatetraenoic Acid in the Kidney
by Soisungwan Satarug
J. Xenobiot. 2025, 15(4), 122; https://doi.org/10.3390/jox15040122 - 1 Aug 2025
Viewed by 270
Abstract
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to [...] Read more.
Chronic kidney disease (CKD) has now reached epidemic proportions in many parts of the world, primarily due to the high incidence of diabetes and hypertension. By 2040, CKD is predicted to be the fifth-leading cause of years of life lost. Developing strategies to prevent CKD and to reduce its progression to kidney failure is thus of great public health significance. Hypertension is known to be both a cause and a consequence of kidney damage and an eminently modifiable risk factor. An increased risk of hypertension, especially among women, has been linked to chronic exposure to the ubiquitous food contaminant cadmium (Cd). The mechanism is unclear but is likely to involve its action on the proximal tubular cells (PTCs) of the kidney, where Cd accumulates. Here, it leads to chronic tubular injury and a sustained drop in the estimated glomerular filtration rate (eGFR), a common sequela of ischemic acute tubular necrosis and acute and chronic tubulointerstitial inflammation, all of which hinder glomerular filtration. The present review discusses exposure levels of Cd that have been associated with an increased risk of hypertension, albuminuria, and eGFR ≤ 60 mL/min/1.73 m2 (low eGFR) in environmentally exposed people. It highlights the potential role of 20-hydroxyeicosatetraenoic acid (20-HETE), the second messenger produced in the kidneys, as the contributing factor to gender-differentiated effects of Cd-induced hypertension. Use of GFR loss and albumin excretion in toxicological risk calculation, and derivation of Cd exposure limits, instead of β2-microglobulin (β2M) excretion at a rate of 300 µg/g creatinine, are recommended. Full article
Show Figures

Graphical abstract

21 pages, 7777 KiB  
Article
Physicochemical and Computational Study of the Encapsulation of Resv-4′-LA and Resv-4′-DHA Lipophenols by Natural and HP-β-CDs
by Ana Belén Hernández-Heredia, Dennis Alexander Silva-Cullishpuma, José Pedro Cerón-Carrasco, Ángel Gil-Izquierdo, Jordan Lehoux, Léo Faion, Céline Crauste, Thierry Durand, José Antonio Gabaldón and Estrella Núñez-Delicado
Int. J. Mol. Sci. 2025, 26(15), 7454; https://doi.org/10.3390/ijms26157454 - 1 Aug 2025
Viewed by 238
Abstract
This study investigates the self-assembly and host–guest complexation behaviour of novel resveratrol-based lipophenols (LipoResv)—resveratrol-4′-linoleate (Resv-4′-LA) and resveratrol-4′-docosahexaenoate (Resv-4′-DHA)—with hydroxypropyl-β-cyclodextrins (HP-β-CDs). These amphiphilic molecules display surfactant-like properties, forming micellar aggregates in aqueous media. Fluorescence spectroscopy was used to determine the critical micelle concentration (CMC), [...] Read more.
This study investigates the self-assembly and host–guest complexation behaviour of novel resveratrol-based lipophenols (LipoResv)—resveratrol-4′-linoleate (Resv-4′-LA) and resveratrol-4′-docosahexaenoate (Resv-4′-DHA)—with hydroxypropyl-β-cyclodextrins (HP-β-CDs). These amphiphilic molecules display surfactant-like properties, forming micellar aggregates in aqueous media. Fluorescence spectroscopy was used to determine the critical micelle concentration (CMC), revealing that LipoResv exhibit significantly lower CMC values than their free fatty acids, indicating higher hydrophobicity. The formation of inclusion complexes with HP-β-CDs was evaluated based on changes in CMC values and further confirmed by dynamic light scattering (DLS) and molecular modelling analyses. Resv-4′-LA formed 1:1 complexes (Kc = 720 M−1), while Resv-4′-DHA demonstrated a 1:2 stoichiometry with lower affinity constants (K1 = 17 M−1, K2 = 0.18 M−1). Environmental parameters (pH, temperature, and ionic strength) significantly modulated CMC and binding constants. Computational docking and molecular dynamics simulations supported the experimental findings by revealing the key structural determinants of the host–guest affinity and micelle stabilization. Ligand efficiency (LE) analysis further aligned with the experimental data, favouring the unmodified fatty acids. These results highlight the versatile encapsulation capacity of HP-β-CDs for bioactive amphiphile molecules and support their potential applications in drug delivery and functional food systems. Full article
Show Figures

Graphical abstract

23 pages, 3297 KiB  
Article
Phenotypic Changes and Oxidative Stress in THP-1 Macrophages in Response to Vanilloids Following Stimulation with Allergen Act d 1 and LPS
by Milena Zlatanova, Jovana Grubač, Jovana Trbojević-Ivić and Marija Gavrović-Jankulović
Antioxidants 2025, 14(8), 949; https://doi.org/10.3390/antiox14080949 (registering DOI) - 1 Aug 2025
Viewed by 272
Abstract
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit [...] Read more.
Activation of macrophages plays a key role in both inflammation and oxidative stress, key features of many chronic diseases. Pro-inflammatory M1-like macrophages, in particular, contribute to pro-oxidative environments and are a frequent focus of immunological research. This research examined the effects of kiwifruit allergen Act d 1, in comparison to LPS, on THP-1 macrophages in vitro differentiated under optimized conditions, both in the presence and in the absence of selected vanilloids. THP-1 monocyte differentiation was optimized by varying PMA exposure and resting time. Act d 1 induced M1-like phenotypic changes comparable to LPS, including upregulation of CD80, IL-1β and IL-6 secretion, gene expression of iNOS and NF-κB activation, in addition to increased reactive oxygen species (ROS) and catalase activity. Treatment with specific vanilloids mitigated these responses, primarily through reduced oxidative stress and NF-κB activation. Notably, vanillin (VN) was the most effective, also reducing CD80 expression and IL-1β levels. These results suggest that vanilloids can affect pro-inflammatory signaling and oxidative stress in THP-1 macrophages and highlight their potential to alter inflammatory conditions characterized by similar immune responses. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 - 1 Aug 2025
Viewed by 201
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 902 KiB  
Review
Cancer Stem Cells in Melanoma: Drivers of Tumor Plasticity and Emerging Therapeutic Strategies
by Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Raluca Niculescu, Iuliu Gabriel Cocuz, Andreea Raluca Cozac-Szöke, Bianca Andreea Lazar, Diana Maria Chiorean, Corina Eugenia Budin and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(15), 7419; https://doi.org/10.3390/ijms26157419 - 1 Aug 2025
Viewed by 162
Abstract
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack [...] Read more.
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack of specific markers (CD271, ABCB5, ALDH, Nanog) and the ability of cells to dynamically change their phenotype. Phenotype-maintaining signaling pathways (Wnt/β-catenin, Notch, Hedgehog, HIF-1) promote self-renewal, treatment resistance, and epithelial–mesenchymal transitions. Tumor plasticity reflects the ability of differentiated cells to acquire stem-like traits and phenotypic flexibility under stress conditions. The interaction of CSCs with the tumor microenvironment accelerates disease progression: they induce the formation of cancer-associated fibroblasts (CAFs) and neo-angiogenesis, extracellular matrix remodeling, and recruitment of immunosuppressive cells, facilitating immune evasion. Emerging therapeutic strategies include immunotherapy (immune checkpoint inhibitors), epigenetic inhibitors, and nanotechnologies (targeted nanoparticles) for delivery of chemotherapeutic agents. Understanding the role of CSCs and tumor plasticity paves the way for more effective innovative therapies against melanoma. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Melanoma Immunotherapy)
Show Figures

Figure 1

Back to TopTop