Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = α-olefin oligomers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2831 KB  
Article
Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization
by Mostafa Khoshsefat, Yanping Ma and Wen-Hua Sun
Materials 2025, 18(9), 2123; https://doi.org/10.3390/ma18092123 - 5 May 2025
Cited by 2 | Viewed by 872
Abstract
Recent advances in designing multinuclear late transition metal catalysts for the oligo-/polymerization of olefins emphasize the great interest and promising approaches in the preparation and application of these catalytic systems. Accordingly, in this study, two dinuclear macrocyclic bis(iminopyridine) Fe- and Co-based complexes (FC [...] Read more.
Recent advances in designing multinuclear late transition metal catalysts for the oligo-/polymerization of olefins emphasize the great interest and promising approaches in the preparation and application of these catalytic systems. Accordingly, in this study, two dinuclear macrocyclic bis(iminopyridine) Fe- and Co-based complexes (FC and CC) were prepared at moderate yields through a one-pot template reaction. Upon activation by MMAO, not only did the catalysts show reasonable activities for the oligomerization of ethylene but also showed high selectivity for the production of tetramers (α-C8). With respect to the catalyst structure, FC demonstrated higher catalyst activity (9.45 g mol−1 Fe h−1 × 105 vs. 8.75 × 105 g mol−1 Co h−1) along with higher selectivity for α-C8 production compared to CC (96.6 vs. 96.1%). Both catalysts had thermal stability up to 70 °C, with FC being much more active and stable than CC under identical conditions. On the other hand, polymerization parameters had an influence on the catalyst performance and oligomer distribution. Moreover, molecular calculations were employed for geometry optimization and structural determination, which was consistent with the experimental results. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Catalytic Polymerizations)
Show Figures

Graphical abstract

36 pages, 10506 KB  
Review
HOF•CH3CN—The Most Potent Oxygen Transfer Agent for a Large Variety of Organic Molecules
by Shlomo Rozen
Molecules 2025, 30(6), 1248; https://doi.org/10.3390/molecules30061248 - 11 Mar 2025
Viewed by 2262
Abstract
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here [...] Read more.
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here most of the known organic reactions with this complex, which is easily made by bubbling dilute fluorine through aqueous acetonitrile. The reactions of HOF•CH3CN with double bonds produce epoxides in a matter of minutes at room temperature, even when the olefin is electron-depleted and cannot be epoxidized by any other means. The electrophilic oxygen can also substitute deactivated tertiary C-H bonds via electrophilic substitution, proceeding with full retention of configuration. Using this complex enables transferring oxygen atoms to a carbonyl and oxidizing alcohols and ethers to ketones. The latter could be oxidized to esters via the Baeyer–Villiger reaction, proving once again the validity of the original Baeyer mechanism. Azines are usually avoided as protecting groups for carbonyl since their removal is problematic. HOF•CH3CN solves this problem, as it is very effective in recreating carbonyls from the respective azines. A bonus of the last reaction is the ability to replace the common 16O isotope of the carbonyl with the heavier 17O or 18O in the simplest and cheapest possible way. The reagent can transfer oxygen to most nitrogen-containing molecules. Thus, it turns practically any azide or amine into nitro compounds, including amino acids. This helps to produce novel α-alkylamino acids. It also attaches oxygen atoms to most tertiary nitrogen atoms, including certain aromatic ones, which could not be obtained before. HOF•CH3CN was also used to make five-member cyclic poly-NO derivatives, many of them intended to be highly energetic materials. The nucleophilic sulfur atom also reacts very smoothly with the reagent in a wide range of compounds to form sulfone derivatives. While common sulfides are easily converted to sulfones by many orthodox reagents, electron-depleted ones, such as Rf-S-Ar, can be oxidized to Rf-SO2-Ar only with this reagent. The mild reaction conditions also make it possible to synthesize a whole range of novel episulfones and offer, as a bonus, a very easy way to make SxO2, x being any isotope variation of oxygen. These mild conditions also helped to oxidize thiophene to thiophen-S,S-dioxide without the Diels–Alder dimerizations, which usually follow such dioxide formation. The latter reaction was a prelude to a series of preparations of [all]-S,S-dioxo-oligothiophenes, which are important for the efficient preparation of active layers in field-effect transistors (FETs), as such oligomers are considered to be important for organic semiconductors for light-emitting diodes (LEDs). Several types of these oligothiophenes were prepared, including partly or fully oxygenated ones, star-oligothiophenes, and fused ones. Several [all]-S,S-dioxo-oligo-thienylenevinylenes were also successfully prepared despite the fact that they also possess carbon–carbon p centers in their molecules. All oxygenated derivatives have been prepared for the first time and have lower HOMO-LUMO gaps compared to their parent compounds. HOF•CH3CN was also used to oxidize the surface of the nanoparticles of oligothiophenes, leaving the core of the nanoparticle unchanged. Several highly interesting features have been detected, including their ability to photostimulate the retinal neurons, especially the inner retinal ones. HOF•CH3CN was also used on elements other than carbon, such as selenium and phosphor. Various selenides were oxidized to the respective selenodioxide derivatives (not a trivial task), while various phosphines were converted efficiently to the corresponding phosphine oxides. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Graphical abstract

11 pages, 1914 KB  
Article
α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane
by Francesco Zaccaria, Antonio Vittoria, Giuseppe Antinucci, Roberta Cipullo and Vincenzo Busico
Polymers 2025, 17(1), 46; https://doi.org/10.3390/polym17010046 - 28 Dec 2024
Cited by 3 | Viewed by 2048
Abstract
Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, [...] Read more.
Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)2ZrCl2, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC). Unexpectedly, a bimodal MWD was highlighted when the precatalyst was activated with methylaluminoxane (MAO), whereas a single Schulz–Flory (SF) MWD was observed with borate salts. The presence of Al centers with different Lewis acidity in the complex and ill-defined structure of MAO is well known, and the broadening effects on the MWD of olefin polymerization products made with metallocene/MAO catalyst systems have been reported before. However, to the best of our knowledge, clear HR-HPLC evidence of two active species resulting from activation with MAO of one single zirconocene precursor, yielding two discrete SF product distributions, is unprecedented. By varying the polarity of the reaction medium, we managed to modulate the MWD of the oligomers from bimodal to monomodal, even with MAO, thus demonstrating that ion pairing effects are behind these unusual findings. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

20 pages, 3079 KB  
Article
Raman Spectroscopy Study of Structurally Uniform Hydrogenated Oligomers of α-Olefins
by Sergey M. Kuznetsov, Maria S. Iablochnikova, Elena A. Sagitova, Kirill A. Prokhorov, Gulnara Yu. Nikolaeva, Leila Yu. Ustynyuk, Pavel V. Ivchenko, Alexey A. Vinogradov, Alexander A. Vinogradov and Ilya E. Nifant’ev
Polymers 2020, 12(9), 2153; https://doi.org/10.3390/polym12092153 - 21 Sep 2020
Cited by 8 | Viewed by 4907
Abstract
The expansion of the range of physico-chemical methods in the study of industrially significant α-olefin oligomers and polymers is of particular interest. In our article, we present a comparative Raman study of structurally uniform hydrogenated dimers, trimers, tetramers, and pentamers of 1-hexene and [...] Read more.
The expansion of the range of physico-chemical methods in the study of industrially significant α-olefin oligomers and polymers is of particular interest. In our article, we present a comparative Raman study of structurally uniform hydrogenated dimers, trimers, tetramers, and pentamers of 1-hexene and 1-octene, that are attractive as bases for freeze-resistant engine oils and lubricants. We found out that the joint monitoring of the disorder longitudinal acoustic mode (D-LAM) and symmetric C–C stretching modes allows the quantitative characterization of the number and length of alkyl chains (i.e., two structural characteristics), upon which the pour point and viscosity of the hydrocarbons depend, and to distinguish these compounds from both each other and linear alkanes. We demonstrated that the ratio of the contents of CH2 and CH3 groups in these hydrocarbons can be determined by using the intensities of the bands in the spectra, related to the asymmetric stretching vibrations of these groups. The density functional theory (DFT) calculations were applied to reveal the relations between the wavenumber and bandshape of the symmetric C–C stretching mode and a conformation arrangement of the 1-hexene and 1-octene dimers. We found that the branched double-chain conformation results in the splitting of the C–C mode into two components with the wavenumbers, which can be used as a measure of the length of branches. This conformation is preferable to the extended-chain conformation for hydrogenated 1-hexene and 1-octene dimers. Full article
(This article belongs to the Special Issue Coordination Catalysis in Additive Polymerization)
Show Figures

Graphical abstract

21 pages, 5549 KB  
Article
Experimental and Theoretical Study of Zirconocene-Catalyzed Oligomerization of 1-Octene
by Ilya Nifant’ev, Alexander Vinogradov, Alexey Vinogradov, Stanislav Karchevsky and Pavel Ivchenko
Polymers 2020, 12(7), 1590; https://doi.org/10.3390/polym12071590 - 17 Jul 2020
Cited by 12 | Viewed by 4293
Abstract
Zirconocene-catalyzed coordination oligomerization of higher α-olefins is of theoretical and practical interest. In this paper, we present the results of experimental and theoretical study of α-olefin oligomerization, catalyzed by (η5-C5H5)]2ZrX2 1/1′ and [...] Read more.
Zirconocene-catalyzed coordination oligomerization of higher α-olefins is of theoretical and practical interest. In this paper, we present the results of experimental and theoretical study of α-olefin oligomerization, catalyzed by (η5-C5H5)]2ZrX2 1/1′ and O[SiMe25-C5H4)]2ZrX2 2/2′ (X = Cl, Me) with the activation by modified methylalymoxane MMAO-12 or by perfluoroalkyl borate [PhNMe2H][B(C6F5)4] (NBF) in the presence and in the absence of organoaluminium compounds, Al(CH2CHMe2)3 (TIBA) and/or Et2AlCl. Under the conditions providing a conventional mononuclear reaction mechanism, 1′ catalyzed dimerization with low selectivity, while 2′ initiated the formation of oligomers in equal mass ratio. The presence of TIBA and especially Et2AlCl resulted in an increase of the selectivity of dimerization. Quantum chemical simulations of the main and side processes performed at the M-06x/ DGDZVP level of the density functional theory (DFT) allowed to explain experimental results involving traditional mononuclear and novel Zr-Al1 and Zr-Al2 mechanistic concepts. Full article
(This article belongs to the Special Issue Coordination Catalysis in Additive Polymerization)
Show Figures

Graphical abstract

31 pages, 6697 KB  
Review
Fair Look at Coordination Oligomerization of Higher α-Olefins
by Ilya Nifant’ev and Pavel Ivchenko
Polymers 2020, 12(5), 1082; https://doi.org/10.3390/polym12051082 - 9 May 2020
Cited by 33 | Viewed by 6866
Abstract
Coordination catalysis is a highly efficient alternative to more traditional acid catalysis in the oligomerization of α-olefins. The distinct advantage of transition metal-based catalysts is the structural homogeneity of the oligomers. Given the great diversity of the catalysts and option of varying the [...] Read more.
Coordination catalysis is a highly efficient alternative to more traditional acid catalysis in the oligomerization of α-olefins. The distinct advantage of transition metal-based catalysts is the structural homogeneity of the oligomers. Given the great diversity of the catalysts and option of varying the reaction conditions, a wide spectrum of processes can be implemented. In recent years, both methylenealkanes (vinylidene dimers of α-olefins) and structurally uniform oligomers with the desired degrees of polymerization have become available for later use in the synthesis of amphiphilic organic compounds and polymers, high-quality oils or lubricants, and other prospective materials. In the present review, we discussed the selective dimerization and oligomerization of α-olefins, catalyzed by metallocene and post-metallocene complexes, and explored the prospects for the further applications of the coordination α-olefin dimers and oligomers. Full article
(This article belongs to the Special Issue Coordination Catalysis in Additive Polymerization)
Show Figures

Graphical abstract

12 pages, 327 KB  
Article
Oligomerization of Ethylene to Produce Linear α-Olefins Using Heterogeneous Catalyst Prepared by Immobilization of α-Diiminenickel(II) Complex into Fluorotetrasilicic Mica Interlayer
by Hideki Kurokawa, Kazuki Miura, Kazuhiro Yamamoto, Tsutomu Sakuragi, Takao Sugiyama, Masa-aki Ohshima and Hiroshi Miura
Catalysts 2013, 3(1), 125-136; https://doi.org/10.3390/catal3010125 - 6 Feb 2013
Cited by 18 | Viewed by 9005
Abstract
Heterogeneous catalysts for production of linear α-olefins from ethylene were prepared by the direct reaction of the α-diimine ligand [L: R-N=C(R')-C(R')=N-R; R' = Me and R = 2,6-Me2Ph (L5), 2,5-Me2Ph (L1), 2-MePh ( [...] Read more.
Heterogeneous catalysts for production of linear α-olefins from ethylene were prepared by the direct reaction of the α-diimine ligand [L: R-N=C(R')-C(R')=N-R; R' = Me and R = 2,6-Me2Ph (L5), 2,5-Me2Ph (L1), 2-MePh (L2), or Ph (L3); R' = 1,8-naphth-diyl and R = Ph (L4)] and Ni2+ ion-exchanged fluorotetrasilicic mica. Only high molecular weight polyethylene was obtained in the reaction using the L5/Ni2+-Mica procatalyst activated by AlEt3 (TEA) as an activator, whereas the TEA-activated L1- and L2/Ni2+-Mica procatalysts afforded a mixture of a large amount of low-molecular weight polyethylene and a small amount of oligomers having 4-22 carbons. The procatalyst consisting of Ni2+-Mica and the L3 ligand that possesses non-substituted phenyl groups on the iminonitrogen atoms effectively promoted the oligomerization of ethylene after its activation with TEA, resulting in the fact that the ethylene oligomers were produced with a moderate catalytic activity (101 g-ethylene g-cat−1 h−1 at 0.7 MPa-ethylene) in the presence of TEA. When the backbone was varied from the butane moiety (L3) to acenaphthene (L4), the solid product dramatically increased. The weight percentage of the oligomers in the total products increased with the increasing reaction temperature; however, an insignificant increase in the oligomers was observed when the ethylene pressure was decreased. Full article
(This article belongs to the Special Issue Molecular Catalysis for Precise Olefin Polymerization)
Show Figures

Figure 1

30 pages, 918 KB  
Review
Solid-State [2+2] Photodimerization and Photopolymerization of α,ω-Diarylpolyene Monomers: Effective Utilization of Noncovalent Intermolecular Interactions in Crystals
by Yoriko Sonoda
Molecules 2011, 16(1), 119-148; https://doi.org/10.3390/molecules16010119 - 28 Dec 2010
Cited by 102 | Viewed by 17452
Abstract
[2+2] Photocycloaddition of olefins is a very useful reaction in synthetic organic chemistry to obtain cyclobutane-containing molecules, which are almost inaccessible by other methods. The reaction, when performed in the crystalline state, occurs more efficiently and selectively than in homogeneous solution due to [...] Read more.
[2+2] Photocycloaddition of olefins is a very useful reaction in synthetic organic chemistry to obtain cyclobutane-containing molecules, which are almost inaccessible by other methods. The reaction, when performed in the crystalline state, occurs more efficiently and selectively than in homogeneous solution due to tight and regular molecular arrangement in the crystal state. Despite numerous examples for the solid-state [2+2] photodimerization of monoenes, however, it is still a challenge to prepare not only dimers but also higher oligomers and polymers from conjugated polyenes, which have multiple reactive double bonds in a molecule. In our recent studies of the solid-state photoreactions of α,ω-diarylpolyenes, noncovalent intermolecular interactions in crystals were effectively utilized to prealign molecules in stacking arrangements, suitable for the [2+2] reaction. With appropriate ring-substituents, [2+2] photodimerization and photopolymerization of the polyenes took place, although the degree of polymerization was relatively low. This review will describe the details of these reactions. Full article
(This article belongs to the Special Issue Cycloaddition Reactions in Organic Synthesis)
Show Figures

Graphical abstract

Back to TopTop