Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = (Ti, Mo)C complex carbide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3795 KiB  
Article
Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction
by Štefan Michna, Jaroslava Svobodová, Anna Knaislová, Jan Novotný and Lenka Michnová
Materials 2025, 18(15), 3583; https://doi.org/10.3390/ma18153583 - 30 Jul 2025
Viewed by 169
Abstract
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a [...] Read more.
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a complex, multi–phase microstructure in a single high–temperature step. The aim was to develop and characterise a material with microstructural features expected to enhance wear resistance, oxidation behaviour, and thermal stability in future applications. The alloy is intended as a precursor for composite nanopowders and surface coatings applied to aluminium–, magnesium–, and iron–based substrates subjected to mechanical and thermal loading. Elemental analysis (XRF, EDS) confirmed the presence of Ti, Al, Mo, and minor elements such as Si, Fe, and C. Microstructural investigations using laser confocal and scanning electron microscopy revealed a heterogeneous structure comprising solid solutions, eutectic regions, and dispersed oxide and carbide phases. Notably, the alloy exhibits high hardness values, reaching >2400 HV in Al2O3 regions and ~1300 HV in Mo– and Si–enriched solid solutions. These results suggest the material’s substantial potential for protective surface engineering. Further tribological, thermal, and corrosion testing, conducted with meticulous attention to detail, will follow to validate its functional performance in target applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 4617 KiB  
Article
Structure and Oxidation Behavior of Multicomponent (Hf,Zr,Ti,Nb,Mo)C Carbide Ceramics
by Elena Mirovaya, Alexander Burlachenko, Nikolay Kulagin, Yuriy Mirovoy, Alexey Neiman and Svetlana Buyakova
Materials 2023, 16(8), 3163; https://doi.org/10.3390/ma16083163 - 17 Apr 2023
Cited by 3 | Viewed by 2152
Abstract
Multicomponent ceramics based on transition metals carbides are widely known for their excellent physicomechanical properties and thermal stability. The variation of the elemental composition of multicomponent ceramics provides the required properties. The present study examined the structure and oxidation behavior of (Hf,Zr,Ti,Nb,Mo)C ceramics. [...] Read more.
Multicomponent ceramics based on transition metals carbides are widely known for their excellent physicomechanical properties and thermal stability. The variation of the elemental composition of multicomponent ceramics provides the required properties. The present study examined the structure and oxidation behavior of (Hf,Zr,Ti,Nb,Mo)C ceramics. Single-phase ceramic solid solution (Hf,Zr,Ti,Nb,Mo)C with FCC structure was obtained by sintering under pressure. It is shown that during the mechanical processing of an equimolar powder mixture of TiC–ZrC–NbC–HfC–Mo2C carbides, the formation of double and triple solid solutions occurs. The hardness of (Hf,Zr,Ti,Nb,Mo)C ceramic was found at 15 ± 0.8 GPa, compressive ultimate strength—at 1.6 ± 0.1 GPa and fracture toughness—at 4.4 ± 0.1 MPa∙m1/2. The oxidation behavior of the produced ceramics in an oxygen-containing atmosphere was studied in the range of 25 to 1200 °C by means of high-temperature in situ diffraction. It was demonstrated that (Hf,Zr,Ti,Nb,Mo)C ceramics oxidation is a two-stage process accompanied by the change of oxide layer phase composition. As a possible mechanism of oxidation, diffusion of oxygen into the ceramic bulk results in the formation of a complex oxide layer made of c–(Zr,Hf,Ti,Nb)O2, m–(Zr,Hf)O2, Nb2Zr6O17 and (Ti,Nb)O2 was proposed. Full article
(This article belongs to the Special Issue Structural Design of Ceramic Materials and Ceramic-Based Composites)
Show Figures

Figure 1

16 pages, 2731 KiB  
Review
Low-Carbon Ti-Mo Microalloyed Hot Rolled Steels: Special Features of the Formation of the Structural State and Mechanical Properties
by Alexander Zaitsev and Nataliya Arutyunyan
Metals 2021, 11(10), 1584; https://doi.org/10.3390/met11101584 - 5 Oct 2021
Cited by 21 | Viewed by 2932
Abstract
Low-carbon Ti-Mo microalloyed steels represent a new generation of high strength steels for automobile sheet. Excellent indicators of difficult-to-combine technological, strength, and other service properties are achieved due to the superposition of a dispersed ferrite matrix and a bulk system of nanoscale carbide [...] Read more.
Low-carbon Ti-Mo microalloyed steels represent a new generation of high strength steels for automobile sheet. Excellent indicators of difficult-to-combine technological, strength, and other service properties are achieved due to the superposition of a dispersed ferrite matrix and a bulk system of nanoscale carbide precipitates. Recently, developments are underway to optimize thermo-deformation processing for the most efficient use of phase precipitates. The review summarizes and analyzes the results of studies of mechanical properties depending on the chemical composition and parameters of hot deformation of low-carbon Ti-Mo microalloyed steels. Particular attention is paid to the features of the formation and the influence of various types of phase precipitates and the dispersion of the microstructure on mechanical properties. The advantages of Ti-Mo microalloying system and the tasks requiring further solution are shown. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

Back to TopTop