Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Shereen Basiouni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4146 KiB  
Review
The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(6), 809; https://doi.org/10.3390/v17060809 - 2 Jun 2025
Viewed by 2146
Abstract
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that [...] Read more.
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that live in close proximity to humans. As of April 2025, approximately 15,205 rodent-associated viruses have been identified across 32 viral families. Among these, key zoonotic agents belong to the Arenaviridae, Hantaviridae, Picornaviridae, Coronaviridae, and Poxviridae families. Due to their adaptability to both urban and rural environments, rodents serve as efficient vectors across diverse ecological landscapes. Environmental and anthropogenic factors, such as climate change, urbanization, deforestation, and emerging pathogens, are increasingly linked to rising outbreaks of rodent-borne diseases. This review synthesizes current knowledge on rodent-borne viral zoonoses, focusing on their taxonomy, biology, host associations, transmission dynamics, clinical impact, and public health significance. It underscores the critical need for early detection, effective surveillance, and integrated control strategies. A multidisciplinary approach, including enhanced vector control, improved environmental sanitation, and targeted public education, is essential for mitigating the growing threat of rodent-borne zoonoses to global health. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2025)
Show Figures

Figure 1

16 pages, 4183 KiB  
Article
Structural Analysis of Cardanol and Its Biological Activities on Human Keratinocyte Cells
by Shereen Basiouni, Nina Abel, Wolfgang Eisenreich, Helen L. May-Simera and Awad A. Shehata
Metabolites 2025, 15(2), 83; https://doi.org/10.3390/metabo15020083 - 30 Jan 2025
Cited by 1 | Viewed by 1021
Abstract
Background/Objectives: Cashew nutshell liquid (CNSL) is obtained during the industrial processing of cashew nuts. It contains anacardic acid (2-hydroxy-6-n-pentadecylbenzoic acid) and cardanol (3-n-pentadecylphenol). Therefore, CNSL provides a rich source of phenolic lipids serving as natural antioxidants or precursors for industrial uses. Here, we [...] Read more.
Background/Objectives: Cashew nutshell liquid (CNSL) is obtained during the industrial processing of cashew nuts. It contains anacardic acid (2-hydroxy-6-n-pentadecylbenzoic acid) and cardanol (3-n-pentadecylphenol). Therefore, CNSL provides a rich source of phenolic lipids serving as natural antioxidants or precursors for industrial uses. Here, we have analyzed in detail a commercial sample of cardanol by nuclear magnetic resonance (NMR) spectroscopy and its biological activities in the human keratinocyte cell line (HaCaT cells). Methods: The cytotoxic effects, genotoxicity, cell proliferation, and healing properties on HaCaT cells were studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, comet assay, proliferation assay, and scratch assay, respectively. Additionally, the modulatory effect of cardanol on the cellular fatty acid profile of HaCaT cells was analyzed by gas chromatography. Results: NMR showed the structure of cardanol as a mixture of the 8′-monoene (42%), the 8′,11′-diene (22%), and the 8′,11′,14′-triene (36%) for the pentadecyl side chain with all double bonds in Z configuration. The cytotoxic effects on HaCaT cells only occurred at high concentrations of cardanol (>10 µg/mL), which caused significant reductions in cell viability. Using the comet assay, a dose-dependent increase in DNA damage was found at concentrations above 10 µg/mL. Scratch assays revealed that cardanol achieved 99% wound closure of HaCaT cells treated with 1 µg/mL cardanol after 48 h. Cardanol at 1 and 0.1 µg/mL significantly enhanced HaCaT cell proliferation and promoted migration, contributing to accelerated wound healing processes. As shown by gas chromatography, 1 µg/mL cardanol increased the total amount of polyunsaturated fatty acids (PUFA), including ω-3, ω-6, and ω-9 fatty acids. Conclusions: Together, these findings suggest that concentrations of <10 µg/mL cardanol are safe and exhibit beneficial biological activities, particularly wound-healing effects on HaCaT cells. Further studies are necessary to explore additional potential applications of cardanol, to refine its formulations for clinical use, and to ensure its safety and action in other target cells and species. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

21 pages, 590 KiB  
Article
Evaluation of Spirulina platensis as a Feed Additive in Low-Protein Diets of Broilers
by Hüseyin Yalçınkaya, Sakine Yalçın, Muhammad Shazaib Ramay, Esin Ebru Onbaşılar, Buket Bakır, Fatma Kübra Erbay Elibol, Suzan Yalçın, Awad A. Shehata and Shereen Basiouni
Int. J. Mol. Sci. 2025, 26(1), 24; https://doi.org/10.3390/ijms26010024 - 24 Dec 2024
Cited by 1 | Viewed by 1294
Abstract
Spirulina platensis is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using Spirulina platensis as a feed additive in broiler diets. A total of 252 daily male [...] Read more.
Spirulina platensis is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using Spirulina platensis as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups. There were two different protein groups: one was at the catalog protein value, and the other was reduced by 10%. Spirulina platensis at 0, 0.1, and 0.2% was added to each protein group. The trial lasted 41 days. Reducing the protein level by 10% had a negative impact on the performance of the chicks. However, Spirulina platensis supplementation had a positive effect on the feed conversion ratio, reduced the oxidative stress index in the chicks’ liver and meat, increased the total antioxidant status and antioxidant enzyme activities, improved the villus height, serum IgG, and some bone parameters, and reduced the serum triglyceride concentration. The carcass yield, visceral organ weight percentages, total phenolic content, and malondialdehyde (MDA) level in the thigh meat and some serum biochemical parameters were not affected by the usage of Spirulina platensis. In conclusion, 0.1% Spirulina platensis could be a feasible feed additive in low-protein diets due to eliciting an improved performance, antioxidant status, and immune response in broilers. Full article
Show Figures

Figure 1

15 pages, 1170 KiB  
Article
Effects of Spirulina platensis and/or Allium sativum on Antioxidant Status, Immune Response, Gut Morphology, and Intestinal Lactobacilli and Coliforms of Heat-Stressed Broiler Chicken
by Youssef A. Attia, Reda A. Hassan, Nicola Francesco Addeo, Fulvia Bovera, Rashed A. Alhotan, Adel D. Al-qurashi, Hani H. Al-Baadani, Mohamed A. Al-Banoby, Asmaa F. Khafaga, Wolfgang Eisenreich, Awad A. Shehata and Shereen Basiouni
Vet. Sci. 2023, 10(12), 678; https://doi.org/10.3390/vetsci10120678 - 27 Nov 2023
Cited by 13 | Viewed by 3487
Abstract
This study aims to evaluate the effectiveness of the dietary addition of Spirulina platensis (SP) and/or garlic powder (GP) on heat-stressed broiler chickens. For this purpose, 600 Ross-308 broiler chicks were allocated at 22 days of age into five groups (G1–G5), each comprising [...] Read more.
This study aims to evaluate the effectiveness of the dietary addition of Spirulina platensis (SP) and/or garlic powder (GP) on heat-stressed broiler chickens. For this purpose, 600 Ross-308 broiler chicks were allocated at 22 days of age into five groups (G1–G5), each comprising six groups of 20 birds each. Chickens kept in G1 (negative control) were fed a basal diet and raised at 26 ± 1 °C. Chickens kept in G2 to G5 were exposed to periodic heat stress (35 ± 1 °C for 9 h/day) from 22 to 35 days old. Chickens in G2 (positive control) were provided a basal diet, while G3, G4, and G5 were fed a basal diet enriched with SP (1 g/kg diet), GP (200 mg/kg diet), or SP/GP (1 g SP/kg + 200 mg GP/kg diet), respectively. The assessment parameters included the chickens’ performance, malondialdehyde and total antioxidant capacity, blood biochemistry, intestinal morphology, and modulation of lactobacilli and total coliforms in the intestinal microbiota. Our findings demonstrated that supplementing heat-stressed chickens with SP and/or GP significantly mitigated the negative effects on the European production efficiency index (EPEF), survival rate, cholesterol profile, and oxidative stress markers. Chickens supplemented with GP and/or SP exhibited significantly better EPEF and survivability rates. Heat stress had a significant impact on both the gut structure and gut microbiota. However, SP and/or GP supplementation improved the gut morphology, significantly increased the intestinal lactobacilli, and reduced the coliform contents. It was also found that the simultaneous feeding of SP and GP led to even higher recovery levels with improved lipid metabolites, immunity, and oxidative status. Overall, supplementing chickens with SP and/or GP can alleviate the negative effects of heat stress. Full article
Show Figures

Figure 1

29 pages, 2262 KiB  
Review
Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects
by Shereen Basiouni, Guillermo Tellez-Isaias, Juan D. Latorre, Brittany D. Graham, Victor M. Petrone-Garcia, Hesham R. El-Seedi, Sakine Yalçın, Amr Abd El-Wahab, Christian Visscher, Helen L. May-Simera, Claudia Huber, Wolfgang Eisenreich and Awad A. Shehata
Vet. Sci. 2023, 10(1), 55; https://doi.org/10.3390/vetsci10010055 - 14 Jan 2023
Cited by 56 | Viewed by 8191
Abstract
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining [...] Read more.
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal’s microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted. Full article
(This article belongs to the Special Issue Nutraceuticals to Mitigate the Secret Killers in Animals)
Show Figures

Figure 1

12 pages, 1155 KiB  
Review
Poultry Production and Sustainability in Developing Countries under the COVID-19 Crisis: Lessons Learned
by Youssef A. Attia, Md. Tanvir Rahman, Md. Jannat Hossain, Shereen Basiouni, Asmaa F. Khafaga, Awad A. Shehata and Hafez M. Hafez
Animals 2022, 12(5), 644; https://doi.org/10.3390/ani12050644 - 3 Mar 2022
Cited by 70 | Viewed by 17673
Abstract
Poultry farming is a significant source of revenue generation for small farmers in developing countries. It plays a vital role in fulfilling the daily protein requirements of humans through meat and eggs consumption. The recently emerged pandemic Coronavirus Disease-19 (COVID-19) impacts the poultry [...] Read more.
Poultry farming is a significant source of revenue generation for small farmers in developing countries. It plays a vital role in fulfilling the daily protein requirements of humans through meat and eggs consumption. The recently emerged pandemic Coronavirus Disease-19 (COVID-19) impacts the poultry production sector. Although the whole world is affected, these impacts may be more severe in developing countries due to their dependency on exporting necessary supplies such as feed, vaccines, drugs, and utensils. In this review, we have discussed poultry production in developing countries under the COVID-19 crisis and measures to regain the loss in the poultry industries. Generally, due to the lockdown, trade limitations have negatively impacted poultry industries, which might exacerbate global poverty. Coordinated activities have to be taken at the private and government levels to arrange soft loans so that these farms can restore their production and marketing to normal levels. In addition, here, we have focused on the supply of farm input, feed, other raw materials, management system, improved breeding efficiency, veterinary services, and marketing of egg and meat, which have to be ensured to secure a sustainable poultry production chain. Full article
Show Figures

Figure 1

30 pages, 5314 KiB  
Review
Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries
by Fatma Acheuk, Shereen Basiouni, Awad A. Shehata, Katie Dick, Haifa Hajri, Salma Lasram, Mete Yilmaz, Mevlüt Emekci, George Tsiamis, Marina Spona-Friedl, Helen May-Simera, Wolfgang Eisenreich and Spyridon Ntougias
Biomolecules 2022, 12(2), 311; https://doi.org/10.3390/biom12020311 - 15 Feb 2022
Cited by 77 | Viewed by 11835
Abstract
Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand [...] Read more.
Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted. Full article
Show Figures

Figure 1

34 pages, 4306 KiB  
Review
Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry
by Awad A. Shehata, Sakine Yalçın, Juan D. Latorre, Shereen Basiouni, Youssef A. Attia, Amr Abd El-Wahab, Christian Visscher, Hesham R. El-Seedi, Claudia Huber, Hafez M. Hafez, Wolfgang Eisenreich and Guillermo Tellez-Isaias
Microorganisms 2022, 10(2), 395; https://doi.org/10.3390/microorganisms10020395 - 8 Feb 2022
Cited by 178 | Viewed by 23113
Abstract
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This [...] Read more.
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry. Full article
(This article belongs to the Special Issue Gut Microbiome of Farm Animals in Health and Disease)
Show Figures

Figure 1

21 pages, 21649 KiB  
Review
Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2
by Awad A. Shehata, Youssef A. Attia, Md. Tanvir Rahman, Shereen Basiouni, Hesham R. El-Seedi, Esam I. Azhar, Asmaa F. Khafaga and Hafez M. Hafez
Animals 2022, 12(3), 378; https://doi.org/10.3390/ani12030378 - 4 Feb 2022
Cited by 22 | Viewed by 7020
Abstract
In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a [...] Read more.
In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals. Full article
(This article belongs to the Special Issue Susceptibility of Animals to SARS-CoV-2)
Show Figures

Figure 1

32 pages, 2770 KiB  
Review
Algae and Their Metabolites as Potential Bio-Pesticides
by Elias Asimakis, Awad A. Shehata, Wolfgang Eisenreich, Fatma Acheuk, Salma Lasram, Shereen Basiouni, Mevlüt Emekci, Spyridon Ntougias, Gökçe Taner, Helen May-Simera, Mete Yilmaz and George Tsiamis
Microorganisms 2022, 10(2), 307; https://doi.org/10.3390/microorganisms10020307 - 27 Jan 2022
Cited by 61 | Viewed by 11726
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely [...] Read more.
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds. Full article
(This article belongs to the Special Issue Advance in Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

16 pages, 1556 KiB  
Review
Poult Enteritis and Mortality Syndrome in Turkey Poults: Causes, Diagnosis and Preventive Measures
by Awad A. Shehata, Shereen Basiouni, Reinhard Sting, Valerij Akimkin, Marc Hoferer and Hafez M. Hafez
Animals 2021, 11(7), 2063; https://doi.org/10.3390/ani11072063 - 10 Jul 2021
Cited by 9 | Viewed by 6718
Abstract
Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as [...] Read more.
Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and adenoviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also interconnected factors. However, it is difficult to determine the specific cause of enteric disorders under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative agents of PEMS and challenges in diagnosis and control. Full article
(This article belongs to the Special Issue Advances in Avian Diseases Research)
Show Figures

Figure 1

16 pages, 3563 KiB  
Article
Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata
by Shereen Basiouni, Marwa A. A. Fayed, Reda Tarabees, Mohamed El-Sayed, Ahmed Elkhatam, Klaus-Rainer Töllner, Manfred Hessel, Thomas Geisberger, Claudia Huber, Wolfgang Eisenreich and Awad A. Shehata
Metabolites 2020, 10(9), 353; https://doi.org/10.3390/metabo10090353 - 31 Aug 2020
Cited by 19 | Viewed by 4696
Abstract
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. [...] Read more.
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry. Full article
(This article belongs to the Special Issue Metabolites: From Physiology to Pathology)
Show Figures

Graphical abstract

13 pages, 1099 KiB  
Article
The Influence of Polyunsaturated Fatty Acids on the Phospholipase D Isoforms Trafficking and Activity in Mast Cells
by Shereen Basiouni, Herbert Fuhrmann and Julia Schumann
Int. J. Mol. Sci. 2013, 14(5), 9005-9017; https://doi.org/10.3390/ijms14059005 - 25 Apr 2013
Cited by 8 | Viewed by 7437
Abstract
The impact of polyunsaturated fatty acid (PUFA) supplementation on phospholipase D (PLD) trafficking and activity in mast cells was investigated. The enrichment of mast cells with different PUFA including α-linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachidonic [...] Read more.
The impact of polyunsaturated fatty acid (PUFA) supplementation on phospholipase D (PLD) trafficking and activity in mast cells was investigated. The enrichment of mast cells with different PUFA including α-linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachidonic acid (AA) revealed a PUFA-mediated modulation of the mastoparan-stimulated PLD trafficking and activity. All PUFA examined, except AA, prevented the migration of the PLD1 to the plasma membrane. For PLD2 no PUFA effects on trafficking could be observed. Moreover, PUFA supplementation resulted in an increase of mastoparan-stimulated total PLD activity, which correlated with the number of double bonds of the supplemented fatty acids. To investigate, which PLD isoform was affected by PUFA, stimulated mast cells were supplemented with DHA or AA in the presence of specific PLD-isoform inhibitors. It was found that both DHA and AA diminished the inhibition of PLD activity in the presence of a PLD1 inhibitor. By contrast, only AA diminished the inhibition of PLD activity in the presence of a PLD2 inhibitor. Thus, PUFA modulate the trafficking and activity of PLD isoforms in mast cells differently. This may, in part, account for the immunomodulatory effect of unsaturated fatty acids and contributes to our understanding of the modulation of mast cell activity by PUFA. Full article
(This article belongs to the Special Issue Regulation of Membrane Trafficking and Its Potential Implications)
Show Figures

Back to TopTop