Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Authors = Fatimah O. Al-Otibi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 572 KiB  
Article
Synthetic Human Lactoferrin Peptide hLF(1-11) Shows Antifungal Activity and Synergism with Fluconazole and Anidulafungin Towards Candida albicans and Various Non-Albicans Candida Species, Including Candidozyma auris
by Carlo Brouwer, Youp van der Linden, Maria Rios Carrasco, Saleh Alwasel, Tarad Abalkhail, Fatimah O. Al-Otibi, Teun Boekhout and Mick M. Welling
Antibiotics 2025, 14(7), 671; https://doi.org/10.3390/antibiotics14070671 - 2 Jul 2025
Viewed by 532
Abstract
Introduction: Candidozyma auris (Cz. auris) has emerged globally, and diseases caused by it are associated with a mortality rate of 30–72%. This yeast is often multidrug-resistant and challenging to treat. A synthetic peptide, consisting of 11 amino acids of human lactoferrin [...] Read more.
Introduction: Candidozyma auris (Cz. auris) has emerged globally, and diseases caused by it are associated with a mortality rate of 30–72%. This yeast is often multidrug-resistant and challenging to treat. A synthetic peptide, consisting of 11 amino acids of human lactoferrin (hLF1-11), offers a new therapy that is active against Candida albicans, non-albicans Candida yeasts, as well as Cz. auris. The current study examined the susceptibility of clinically relevant Candida species to hLF(1-11) in vitro and investigated the synergistic interaction of this peptide with fluconazole (FLU) and anidulafungin (ANI). Methods: Susceptibility of the yeasts to hLF(1-11) was tested with a microdilution method to determine minimum inhibitory concentrations (MICs). A total of 59 strains belonging to 16 species of Candida or Candidozyma were tested. The treatment cohort included 20 strains of Cz. auris originating from six different countries. Results: Mean MIC values of all susceptible strains ranged from 16.66 ± 6.46 μg/mL to 45.83 ± 10.21 μg/mL. There were no statistical differences in the susceptibility of hLF(1-11) for Cz. auris across geographic origins. In the combinatory tests, drugs acting together, the fractional inhibitory concentration indexes [FIC] < 1.0, showed a synergistic or additive effect on the efficacy of FLU and ANI when used in combination with hLF(1-11). [FIC] indexes 1–2 were interpreted as intermediate. MIC values in combinatory use were 1–2 titer steps lower than when used alone. Conclusions: hLF(1-11) inhibits the growth of yeasts that belong to the genus Candida, including Cz. auris. The combinatory use may be further investigated to treat infections caused by resistant yeasts. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

26 pages, 3623 KiB  
Review
Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities
by Mohamed Taha Yassin, Fatimah O. Al-Otibi, Sarah A. Al-Sahli, Mohammad S. El-Wetidy and Sara Mohamed
Cancers 2024, 16(24), 4234; https://doi.org/10.3390/cancers16244234 - 19 Dec 2024
Cited by 15 | Viewed by 3021
Abstract
Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron [...] Read more.
Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron oxide, zinc oxide, and copper oxide, offer a promising solution by enhancing targeted drug delivery, reducing systemic toxicity, and mitigating chemotherapy-induced disabilities like neurotoxicity and cardiotoxicity. Nanocarriers conjugated with drugs can improve drug delivery within the body and enhance their circulation in the bloodstream. Recent advancements in MONP synthesis and functionalization have further improved their stability and drug-loading capacity, making them a valuable tool in cancer treatment. MONPs have distinctive physicochemical characteristics, enabling better imaging, drug encapsulation, and targeted medication delivery to cancerous cells. These nanocarriers enhance treatment effectiveness through focused and controlled drug release, reducing off-target effects and addressing drug resistance. This review aims to explore the potential of MONPs as efficient nanocarriers for anticancer drugs, addressing limitations of traditional chemotherapy such as poor specificity, systemic toxicity, and drug resistance. Additionally, the review discusses recent advancements in MONP synthesis and functionalization, which enhance their stability, drug-loading capacity, and compatibility. Full article
(This article belongs to the Collection Cancer Nanomedicine)
Show Figures

Figure 1

23 pages, 3248 KiB  
Article
Biochemical, Microstructural, and Probiotic Bacterial Patterns of Innovative Fresh Cheese Fortified with Helianthus tuberosus Tubers
by Mohamed R. Elgarhy, Mohamed M. Omar, Fatimah O. Al-Otibi, Mohamed Z. EL-Abbassy, Salah A. Khalifa, Ibrahim A. A. Abou Ayana, Yosra A. Helmy and WesamEldin I. A. Saber
Processes 2023, 11(10), 2854; https://doi.org/10.3390/pr11102854 - 28 Sep 2023
Cited by 2 | Viewed by 1547
Abstract
Recently, functional foods have become the aim of customers and food producers. Integrating vegetable ingredients in the food industry is a productive goal to reduce costs while maintaining quality. Dried Jerusalem artichoke tubers powder (DJATP) was used as a novel approach in cheese [...] Read more.
Recently, functional foods have become the aim of customers and food producers. Integrating vegetable ingredients in the food industry is a productive goal to reduce costs while maintaining quality. Dried Jerusalem artichoke tubers powder (DJATP) was used as a novel approach in cheese manufacturing. Innovatively, its holding capacity features and impact on probiotic development were evaluated. The SEM microstructure image and biochemical analysis of DJATP confirmed higher water holding (5.31 g/g), oil absorption (1.99 g/g), and swelling (1.79 g/g) capacities than casein. DJATP (3%) supported the probiotic bacterial growth (Streptococcus thermophilus, Bifidobacterium bifidum, and Lactobacillus acidophilus) and accelerated the fermentation of skimmed milk more than pure inulin. When fortified with DJATP (3% or 6%), the cheese yield increased (24.66% and 27.85%, respectively) compared with 17.55% for control after storage (14 days). Besides the high levels of amino acids, minerals, flavonoids, phenols, and antioxidants, the probiotic bacteria in the DJATP-fortified cheese were better active, with better sensory features, recording the highest judging score (87.67) against the control (79.00). To our knowledge, no preceding studies used DJATP in fresh cheese manufacturing followed the probiotic behavior in DJATP or compared the microstructure of DJATP and casein. Instead of inulin, our novel approach suggests using DJATP as a prebiotic and an enhancer for fresh cheese quality and yield, all while being cost-effective. Future studies are encouraged to explore the potential use of DJATP in other functional cheese products. Full article
(This article belongs to the Special Issue Innovations in Food Processing and Preservation Methods)
Show Figures

Figure 1

20 pages, 6288 KiB  
Article
Photocatalytic Removal of Crystal Violet Dye Utilizing Greenly Synthesized Iron Oxide Nanoparticles
by Mohamed Taha Yassin, Fatimah O. Al-Otibi and Abdulaziz A. Al-Askar
Separations 2023, 10(9), 513; https://doi.org/10.3390/separations10090513 - 17 Sep 2023
Cited by 12 | Viewed by 3293
Abstract
The presence of synthetic industrial dyes in the environment poses significant risks to aquatic ecosystems, human health, and economies. This study aims to synthesize iron oxide nanoparticles (IONPs) using a green method, analyze them using physicochemical techniques, and examine the effectiveness with which [...] Read more.
The presence of synthetic industrial dyes in the environment poses significant risks to aquatic ecosystems, human health, and economies. This study aims to synthesize iron oxide nanoparticles (IONPs) using a green method, analyze them using physicochemical techniques, and examine the effectiveness with which they photocatalytically degrade crystal violet dye in sunlight. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the biogenic IONPs showed a UV peak at a wavelength of 241 nm, with functional groups including phenols, alkynes, and alkenes. X-ray diffraction (XRD) analysis confirmed the amorphous nature of the bioinspired IONPs. The mean diameter of the biogenic IONPs was 49.63 ± 9.23 nm, and they had a surface charge of −5.69 mV. The efficiency with which the synthesized IONPs removed the crystal violet dye was evaluated under dark and sunlight conditions. The removal efficiency was found to be concentration and time dependent, with a peak removal percentage of 99.23% being achieved when the IONPs were exposed to sunlight for 210 min. The biogenic IONPs also demonstrated antioxidant activity, with a relative IC50 value of 64.31 µg/mL. In conclusion, biogenic IONPs offer a viable and environmentally friendly approach for eradicating industrial synthetic dyes and remediating contaminated environments and aquatic ecosystems. Full article
(This article belongs to the Special Issue Adsorption Technique for Water Purification)
Show Figures

Figure 1

33 pages, 7169 KiB  
Article
A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling
by Hala Fakhry, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Yosra A. Helmy, Mohammed S. El Hersh, Khaled M. Elattar, WesamEldin I. A. Saber and Ashraf Elsayed
Polymers 2023, 15(18), 3754; https://doi.org/10.3390/polym15183754 - 14 Sep 2023
Cited by 10 | Viewed by 1886
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents [...] Read more.
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling. Full article
(This article belongs to the Special Issue Recent Advances in Functional Polymer Materials for Water Treatment)
Show Figures

Figure 1

19 pages, 4700 KiB  
Article
Phytogenic Synthesis and Characterization of Silver Metallic/Bimetallic Nanoparticles Using Beta vulgaris L. Extract and Assessments of Their Potential Biological Activities
by Khaled M. Elattar, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Mohammed S. El-Hersh, Yosra A. Helmy and WesamEldin I. A. Saber
Appl. Sci. 2023, 13(18), 10110; https://doi.org/10.3390/app131810110 - 8 Sep 2023
Cited by 26 | Viewed by 2497
Abstract
The synthesis of novel nanomedicines through eco-friendly protocols has been applied on a large scale with the prediction of discovering alternate therapies. The current work attained phytogenic synthesis of Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs through bio-reduction using an aqueous extract [...] Read more.
The synthesis of novel nanomedicines through eco-friendly protocols has been applied on a large scale with the prediction of discovering alternate therapies. The current work attained phytogenic synthesis of Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs through bio-reduction using an aqueous extract of Beta vulgaris (red beetroot). The phytochemical profile of the eco-friendly synthesized metallic/bimetallic nanoparticles was studied. The optical properties of nano-solutions were studied via UV-visible spectroscopy. The Fourier-transform infrared spectroscopy (FT-IR) spectral analyses revealed that stretching vibrations at wavenumbers 3303.81–3327.81 cm−1 attributed to phenolic hydroxyl groups documented shifts in the values in this range owing to proton dissociation through the bio-reduction of the metal ions. The surface morphology and the charge of the nanoparticles were investigated using a Transmission Electron Microscope (TEM) and zeta potential analyses. The prepared nano-solutions showed lower antioxidant activity (1,1-Diphenyl-2-picrylhydrazyl (DPPH) and phosphomolybdate assays) than the plant extract. These results together with phytochemical analyses support the participation of the reactive species (phenolic contents) in the bio-reduction of the metal ions in the solutions through the formation of metallic/bimetallic nanoparticles. Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs showed antibacterial potentiality. AgSeO2-bmNPs were superior with inhibitory zone diameters of 34.7, 37.7, 11.7, and 32.7 mm against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Salmonella enterica, respectively. Applying the Methylthiazole Tetrazolium (MTT) assay, the Ag-TiO2 bmNPs revealed potent cytotoxicity against the HePG2 tumor cell line (IC50 = 18.18 ± 1.5 µg/mL), while Ag-SeO2 bmNPs revealed the most potent cytotoxicity against the MCF-7 cell line (IC50 = 17.92 ± 1.4 µg/mL). Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

17 pages, 13877 KiB  
Article
Green Synthesis, Characterization, and Antifungal Efficiency of Biogenic Iron Oxide Nanoparticles
by Mohamed Taha Yassin, Fatimah O. Al-Otibi, Abdulaziz A. Al-Askar and Raedah Ibrahim Alharbi
Appl. Sci. 2023, 13(17), 9942; https://doi.org/10.3390/app13179942 - 2 Sep 2023
Cited by 12 | Viewed by 3220
Abstract
The high incidence of fungal resistance to commercial fungicides and the negative effects of chemical fungicides on the environment and human health necessitate the development of novel biofungicides for the efficient management of fungal diseases. This study aims to greenly synthesize iron oxide [...] Read more.
The high incidence of fungal resistance to commercial fungicides and the negative effects of chemical fungicides on the environment and human health necessitate the development of novel biofungicides for the efficient management of fungal diseases. This study aims to greenly synthesize iron oxide nanoparticles (IONPs) using the aqueous extract of Laurus nobilis leaves and characterize these nanoparticles using various physicochemical techniques. The biogenic IONPs were tested against two pathogenic strains of Alternaria alternata and compared to the metalaxyl–mancozeb fungicide. The food poisoning technique was used to assess the antifungal efficacy of the greenly synthesized IONPs and the commercial metalaxyl–mancozeb fungicide against the tested pathogenic A. alternata strains. The biogenic IONPs showed a higher antifungal efficiency against the A. alternata OR236467 and A. alternata OR236468 strains at concentrations of 800 ppm compared to metalaxyl– mancozeb fungicide, with relative growth inhibition percentages of 75.89 and 60.63%, respectively. The commercial metalaxyl–mancozeb fungicide (800 ppm) showed growth inhibition percentages of 72.23 and 58.54% against the same strains. The biogenic IONPs also showed potential antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, with DPPH inhibition percentages of 34.61% to 83.27%. In conclusion, the biogenic IONPs derived from L. nobilis leaves have the potential to be employed as biofungicides for the effective control of fungal phytopathogens, reducing reliance on harmful chemical fungicides. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Iron Oxide Nanoparticles)
Show Figures

Figure 1

22 pages, 7983 KiB  
Article
Synergistic Anticandidal Effectiveness of Greenly Synthesized Zinc Oxide Nanoparticles with Antifungal Agents against Nosocomial Candidal Pathogens
by Mohamed Taha Yassin, Fatimah O. Al-Otibi, Abdulaziz A. Al-Askar and Marwa M. Elmaghrabi
Microorganisms 2023, 11(8), 1957; https://doi.org/10.3390/microorganisms11081957 - 31 Jul 2023
Cited by 15 | Viewed by 2893
Abstract
The high prevalence of fungal resistance to antifungal drugs necessitates finding new antifungal combinations to boost the antifungal bioactivity of these agents. Hence, the aim of the present investigation was to greenly synthesize zinc oxide nanoparticles (ZnO-NPs) using an aqueous leaf extract of [...] Read more.
The high prevalence of fungal resistance to antifungal drugs necessitates finding new antifungal combinations to boost the antifungal bioactivity of these agents. Hence, the aim of the present investigation was to greenly synthesize zinc oxide nanoparticles (ZnO-NPs) using an aqueous leaf extract of Salvia officinalis and investigate their antifungal activity and synergistic efficiency with common antifungal agents. The biofabricated ZnO-NPs were characterized to detect their physicochemical properties. A disk diffusion assay was employed to investigate the antifungal effectiveness of the greenly synthesized ZnO-NPs and evaluate their synergistic patterns with common antifungal agents. The Candida tropicalis strain was detected to be the most susceptible strain to ZnO-NPs at both tested concentrations of 50 and 100 µg/disk, demonstrating relative suppressive zones of 19.68 ± 0.32 and 23.17 ± 0.45 mm, respectively. The minimum inhibitory concentration (MIC) of ZnO-NPs against the C. tropicalis strain was 40 µg/mL, whereas the minimum fungicidal concentration (MFC) was found to be 80 µg/mL. The highest synergistic efficiency of the biogenic ZnO-NPs with terbinafine antifungal agent was detected against the C. glabrata strain, whereas the highest synergistic efficiency was detected with fluconazole against the C. albicans strain, demonstrating relative increases in fold of inhibition area (IFA) values of 6.82 and 1.63, respectively. Moreover, potential synergistic efficiency was detected with the nystatin antifungal agent against the C. tropicalis strain with a relative IFA value of 1.06. The scanning electron microscopy (SEM) analysis affirmed the morphological deformations of candidal cells treated with the biosynthesized ZnO-NPs as the formation of abnormal infoldings of the cell wall and membranes and also the formation of pores in the cell wall and membranes, which might lead to the leakage of intracellular constituents. In conclusion, the potential synergistic efficiency of the biogenic ZnO-NPs with terbinafine, nystatin, and fluconazole against the tested candidal strains highlights the potential application of these combinations in formulating novel antifungal agents of high antimicrobial efficiency. The biogenic ZnO nanoparticles and antifungal drugs exhibit powerful synergistic efficiency, which highlights their prospective use in the formulation of efficient antimicrobial medications, including mouthwash, ointments, lotions, and creams for effective candidiasis treatment. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Nanoparticles)
Show Figures

Figure 1

21 pages, 5890 KiB  
Article
Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens
by Fatimah O. Al-Otibi, Mohamed Taha Yassin, Abdulaziz A. Al-Askar and Khalid Maniah
Microorganisms 2023, 11(4), 945; https://doi.org/10.3390/microorganisms11040945 - 4 Apr 2023
Cited by 29 | Viewed by 3928
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles [...] Read more.
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings. Full article
Show Figures

Figure 1

21 pages, 12001 KiB  
Article
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens
by Khalid S. Almaary, Mohamed Taha Yassin, Abdallah M. Elgorban, Fatimah O. Al-Otibi, Abdulaziz A. Al-Askar and Khalid Maniah
Microorganisms 2023, 11(3), 645; https://doi.org/10.3390/microorganisms11030645 - 2 Mar 2023
Cited by 17 | Viewed by 3836
Abstract
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract [...] Read more.
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using different physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units (ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in food packaging applications. Full article
Show Figures

Figure 1

20 pages, 3154 KiB  
Article
Green Synthesis of Zinc Oxide Nanocrystals Utilizing Origanum majorana Leaf Extract and Their Synergistic Patterns with Colistin against Multidrug-Resistant Bacterial Strains
by Mohamed Taha Yassin, Abdulaziz Abdulrahman Al-Askar, Khalid Maniah and Fatimah O. Al-Otibi
Crystals 2022, 12(11), 1513; https://doi.org/10.3390/cryst12111513 - 25 Oct 2022
Cited by 30 | Viewed by 6980
Abstract
There is a crucial necessity for the formulation of efficient antimicrobial agents owing to the increasing prevalence of hospital-acquired bacterial infections triggered by multidrug-resistant microbes that result in significant deaths and illnesses around the world. Hence, the current investigation examined the antibacterial proficiency [...] Read more.
There is a crucial necessity for the formulation of efficient antimicrobial agents owing to the increasing prevalence of hospital-acquired bacterial infections triggered by multidrug-resistant microbes that result in significant deaths and illnesses around the world. Hence, the current investigation examined the antibacterial proficiency of zinc oxide nanoparticles formulated utilizing the green route against bacterial strains that were resistant to multiple drugs. In addition, the synergistic antibacterial action of ZnO nanoparticles (ZnO NPs) combined with colistin was investigated against the tested microbial strains to determine the efficiency of the bioinspired ZnO nanoparticles in boosting the antibacterial proficiency of colistin antibiotic. Incidentally, the bioinspired ZnO nanoparticles were synthesized using water extract of Origanum majorana leaves and these nanomaterials were physicochemically characterized using different analytical techniques. The bioactivity of the synthesized nanomaterials against multidrug-resistant bacterial strains was appraised using the agar diffusion method. The biogenic ZnO NPs at a concentration of 100 μg/disk revealed a compelling antimicrobial efficacy against the tested strains, expressing the maximum antimicrobial action against Escherichia coli strain with clear zone diameter of 38.16 ± 0.18 mm. The remarkable antibacterial proficiency might be accredited to the tiny particle size of the bioformulated ZnO NPs of 12.467 ± 1.36 nm. The net charge of ZnO nanomaterials was −14.8 mV while XRD analysis confirmed their hexagonal wurtzite structure. Furthermore, the bioformulated ZnO NPs showed a promising synergistic potency with colistin demonstrating respective synergism proportions of 91.05, 79.07, 75.04, 75.25, 56.28 and 10.60% against E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, Salmonella typhimurium, Enterobacter cloacae, and Pseudomonas aeruginosa, respectively. In conclusion, the water extract of O. majorana leaves mediated green formulation of zinc oxide nanoparticles with unique physicochemical characteristics and effective antibacterial proficiency against the examined drug-resistant bacterial strains. These nanomaterials could be used in the synthesis of effective antibacterial coatings to control hospital acquired infections caused by multidrug-resistant bacterial pathogens. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Catalytic and Biological Applications)
Show Figures

Figure 1

20 pages, 2091 KiB  
Article
New Strategy for Inducing Resistance against Bacterial Wilt Disease Using an Avirulent Strain of Ralstonia solanacearum
by Zeiad Moussa, Ehsan M. Rashad, Elsherbiny A. Elsherbiny, Abdulaziz A. Al-Askar, Amr Abker Arishi, Fatimah O. Al-Otibi and WesamEldin I. A. Saber
Microorganisms 2022, 10(9), 1814; https://doi.org/10.3390/microorganisms10091814 - 10 Sep 2022
Cited by 10 | Viewed by 3508
Abstract
Ralstonia solanacearum is one of the globally significant plant pathogens that infect a wide host range of economically important plants. A study was conducted to evaluate the hypothesis that an avirulent strain of R. solanacearum can act as a biocontrol mediator for managing [...] Read more.
Ralstonia solanacearum is one of the globally significant plant pathogens that infect a wide host range of economically important plants. A study was conducted to evaluate the hypothesis that an avirulent strain of R. solanacearum can act as a biocontrol mediator for managing potato bacterial wilt. Virulent R. solanacearum was isolated and identified (GenBank accession number; OP180100). The avirulent strain was obtained from the virulent strain through storage for 3 weeks until the development of deep red colonies. The virulent strain had higher lytic activity than the avirulent strain. Tubers’ treatments by the avirulent strain of R. solanacearum, (supernatant, boiled supernatant, and dead cells) significantly reduced plant disease rating and increased the growth, physiological activities, and biomass of potato compared to the untreated, infected control. The major components detected by GC–MS in the supernatant revealed 10.86% palmitic acid (virulent), and 18.03% 1,3-dioxolane, 2,4,5-trimethyl- (avirulent), whereas the major component in the boiled supernatant was 2-hydroxy-gamma-butyrolactone in the virulent (21.17%) and avirulent (27.78%) strains. This is the first research that assessed the influence of boiled supernatant and dead cells of virulent and avirulent R.solanacearum strains in controlling bacterial wilt disease. Additional work is encouraged for further elucidation of such a topic. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

20 pages, 4450 KiB  
Article
Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens
by Mohamed Taha Yassin, Ashraf Abdel-Fattah Mostafa, Abdulaziz Abdulrahman Al-Askar and Fatimah O. Al-Otibi
Crystals 2022, 12(8), 1057; https://doi.org/10.3390/cryst12081057 - 29 Jul 2022
Cited by 42 | Viewed by 5096
Abstract
The high frequency of nosocomial bacterial infections caused by multidrug-resistant pathogens contributes to significant morbidity and mortality worldwide. As a result, finding effective antibacterial agents is of critical importance. Hence, the aim of the present study was to greenly synthesize silver nanoparticles (AgNPs) [...] Read more.
The high frequency of nosocomial bacterial infections caused by multidrug-resistant pathogens contributes to significant morbidity and mortality worldwide. As a result, finding effective antibacterial agents is of critical importance. Hence, the aim of the present study was to greenly synthesize silver nanoparticles (AgNPs) utilizing Salvia officinalis aqueous leaf extract. The biogenic AgNPs were characterized utilizing different physicochemical techniques such as energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectrophotometry (UV-Vis), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) analysis. Additionally, the synergistic antimicrobial effectiveness of the biosynthesized AgNPs with colistin antibiotic against multidrug-resistant bacterial strains was evaluated utilizing the standard disk diffusion assay. The bioformulated AgNPs revealed significant physicochemical features, such as a small particle size of 17.615 ± 1.24 nm and net zeta potential value of −16.2 mV. The elemental mapping of AgNPs revealed that silver was the main element, recording a relative mass percent of 83.16%, followed by carbon (9.51%), oxygen (5.80%), silicon (0.87%), and chloride (0.67%). The disc diffusion assay revealed that AgNPs showed antibacterial potency against different tested bacterial pathogens, recording the highest efficiency against the Escherichia coli strain with an inhibitory zone diameter of 37.86 ± 0.21 mm at an AgNPs concentration of 100 µg/disk. In addition, the antibacterial activity of AgNPs was significantly higher than that of colistin (p ≤ 0.05) against the multidrug resistant bacterial strain namely, Acinetobacter baumannii. The biosynthesized AgNPs revealed synergistic antibacterial activity with colistin antibiotic, demonstrating the highest synergistic percent against the A. baumannii strain (85.57%) followed by Enterobacter cloacae (53.63%), E. coli (35.76%), Klebsiella pneumoniae (35.19%), Salmonella typhimurium (33.06%), and Pseudomonas aeruginosa (13.75%). In conclusion, the biogenic AgNPs revealed unique physicochemical characteristics and significant antibacterial activities against different multidrug-resistant bacterial pathogens. Consequently, the potent synergistic effect of the AgNPs–colistin combination highlights the potential of utilizing this combination for fabrication of highly effective antibacterial coatings in intensive care units for successful control of the spread of nosocomial bacterial infections. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Catalytic and Biological Applications)
Show Figures

Figure 1

18 pages, 6186 KiB  
Article
Synergistic Antifungal Efficiency of Biogenic Silver Nanoparticles with Itraconazole against Multidrug-Resistant Candidal Strains
by Mohamed Taha Yassin, Ashraf Abdel-Fattah Mostafa, Abdulaziz Abdulrahman Al-Askar and Fatimah O. Al-Otibi
Crystals 2022, 12(6), 816; https://doi.org/10.3390/cryst12060816 - 8 Jun 2022
Cited by 25 | Viewed by 4057
Abstract
Fungal infections caused by multidrug-resistant strains are considered one of the leading causes of morbidity and mortality worldwide. Moreover, antifungal medications used in conventional antifungal treatment revealed poor therapeutic effectiveness and possible side effects such as hepatotoxicity, nephrotoxicity, and myelotoxicity. Therefore, the current [...] Read more.
Fungal infections caused by multidrug-resistant strains are considered one of the leading causes of morbidity and mortality worldwide. Moreover, antifungal medications used in conventional antifungal treatment revealed poor therapeutic effectiveness and possible side effects such as hepatotoxicity, nephrotoxicity, and myelotoxicity. Therefore, the current study was developed to determine the antifungal effectiveness of green synthesized silver nanoparticles (AgNPs) and their synergistic efficiency with antifungal drugs against multidrug-resistant candidal strains. The AgNPs were greenly synthesized using the aqueous peel extract of Punica granatum. In addition, AgNPs were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), and zeta potential analysis. In this regard, UV-vis analysis indicated SPR of AgNPs at 396 nm, while the particle size distribution revealed that the average particle size was 18.567 ± 1.46 nm. The surface charge of AgNPs was found to be −15.6 mV, indicating their stability in aqueous solutions. The biofabricated AgNPs indicated antifungal activity against Candida tropicalis, C. albicans, and C. glabrata strains showing inhibitory zone diameters of 23.78 ± 0.63, 21.38 ± 0.58, and 16.53 ± 0.21 mm, respectively while their minimum inhibitory concentration (MIC) was found to be 2.5 µg/mL against C. tropicalis strain. AgNPs and itraconazole revealed the highest synergistic activity against the multidrug-resistant strain, C. glabrata, recording a synergism percentage of 74.32%. In conclusion, the biogenic AgNPs in combination with itraconazole drug exhibited potential synergistic activity against different candidal strains indicating their potential usage in the bioformulation of highly effective antifungal agents. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Catalytic and Biological Applications)
Show Figures

Figure 1

20 pages, 5776 KiB  
Article
Facile Green Synthesis of Zinc Oxide Nanoparticles with Potential Synergistic Activity with Common Antifungal Agents against Multidrug-Resistant Candidal Strains
by Mohamed Taha Yassin, Ashraf Abdel-Fattah Mostafa, Abdulaziz Abdulrahman Al-Askar and Fatimah O. Al-Otibi
Crystals 2022, 12(6), 774; https://doi.org/10.3390/cryst12060774 - 26 May 2022
Cited by 58 | Viewed by 6063
Abstract
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, [...] Read more.
The high incidence of fungal resistance to antifungal drugs represents a global concern, contributing to high levels of morbidity and mortality, especially among immunocompromised patients. Moreover, conventional antifungal medications have poor therapeutic outcomes, as well as possible toxicities resulting from long-term administration. Accordingly, the aim of the present study was to investigate the antifungal effectiveness of biogenic zinc oxide nanoparticles (ZnO NPs) against multidrug-resistant candidal strains. Biogenic ZnO NPs were characterized using physicochemical methods, such as UV-vis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X ray (EDX) spectroscopy, FTIR (Fourier transform infrared) spectroscopy and X-ray powder diffraction (XRD) analysis. UV spectral analysis revealed the formation of two absorption peaks at 367 and 506 nm, which preliminarily indicated the successful synthesis of ZnO NPs, whereas TEM analysis showed that ZnO NPs exhibited an average particle size of 22.84 nm. The EDX spectrum confirmed the successful synthesis of ZnO nanoparticles free of impurities. The FTIR spectrum of the biosynthesized ZnO NPs showed different absorption peaks at 3427.99, 1707.86, 1621.50, 1424.16, 1325.22, 1224.67, 1178.22, 1067.69, 861.22, 752.97 and 574.11 cm−1, corresponding to various functional groups. The average zeta potential value of the ZnO NPs was −7.45 mV. XRD analysis revealed the presence of six diffraction peaks at 2θ = 31.94, 34.66, 36.42, 56.42, 69.54 and 76.94°. The biogenic ZnO NPs (100 µg/disk) exhibited potent antifungal activity against C. albicans, C. glabrata and C. tropicalis strains, with suppressive zone diameters of 24.18 ± 0.32, 20.17 ± 0.56 and 26.35 ± 0.16 mm, respectively. The minimal inhibitory concentration (MIC) of ZnO NPs against C. tropicalis strain was found to be 10 μg/mL, whereas the minimal fungicidal concentration (MFC) was found to be 20 μg/mL. Moreover, ZnO NPs revealed a potential synergistic efficiency with fluconazole, nystatin and clotrimazole antifungal drugs against C. albicans strain, whereas terbinafine, nystatin and itraconazole antifungal drugs showed a potential synergism with ZnO NPs against C. glabrata as a multidrug-resistant strain. In conclusion, pomegranate peel extract mediated green synthesis of ZnO NPs with potential physicochemical features and antimicrobial activity. The biosynthesized ZnO NPs could be utilized for formulation of novel drug combinations to boost the antifungal efficiency of commonly used antifungal agents. Full article
(This article belongs to the Special Issue Novel Nanomaterials for Catalytic and Biological Applications)
Show Figures

Figure 1

Back to TopTop