Evaluating the Inflammatory Protein Ratio (IPR) as an Inflammation-Based Biomarker for Cancer Diagnosis
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Diagnostic Value of IPR Versus Other Pro-Inflammatory Indices in Identifying the Presence of Cancer
2.3. Comparative Diagnostic Value of IPR Based on Reclassification Metrics
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Clinical Data Collection
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
CRP | C-reactive Protein |
Hb | Hemoglobin |
IPR | Inflammatory Protein Ratio |
MLR | Monocyte-Lymphocyte Ratio |
NLR | Neutrophil-Lymphocyte Ratio |
PLR | Platelet-Lymphocyte Ratio |
ROC | Receiver Operating Characteristic |
SII | Systemic Immune-Inflammation Index |
SPE | Serum Protein Electrophoresis |
WBC | White Blood Cells |
References
- Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; Xu, R.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019. JAMA Oncol. 2022, 8, 420. [Google Scholar] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Guimarães Ribeiro, A.; Ferlay, J.; Piñeros, M.; Dias de Oliveira Latorre, M.d.R.; Tavares Guerreiro Fregnani, J.H.; Bray, F. Geographic variations in cancer incidence and mortality in the State of São Paulo, Brazil 2001–17. Cancer Epidemiol. 2023, 85, 102403. [Google Scholar] [CrossRef]
- Pouchin, P.; Genin, M.; Bara, S.; Vigneron, N.; Launoy, G.; Bryère, J. Geographical variability in cancer incidence explained by the socioeconomic environment: An example of lung cancer in northwestern France. J. Epidemiol. Community Health 2025, 79, 200–206. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef] [PubMed]
- Olaechea Astigarraga, P.M.; Álvarez Lerma, F.; Beato Zambrano, C.; Gimeno Costa, R.; Gordo Vidal, F.; Durá Navarro, R.; Ruano Suarez, C.; Aldabó Pallás, T.; Garnacho Montero, J.; Durá Navarro, R.; et al. Epidemiology and prognosis of patients with a history of cancer admitted to intensive care. A multicenter observational study. Med. Intensiva (Engl. Ed.) 2021, 45, 332–346. [Google Scholar] [CrossRef]
- Park, C.; Park, S.-K.; Upshaw, J.N.; Schonberg, M.A. In-hospital mortality, length of stay and hospital costs for hospitalized breast cancer patients with comorbid heart failure in the USA. Curr. Med. Res. Opin. 2021, 37, 2043–2047. [Google Scholar] [CrossRef]
- Chindaprasirt, J.; Wanitpongpun, C.; Limpawattana, P.; Thepsuthammarat, K.; Sripakdee, W.; Wirasorn, K.; Sookprasert, A. Mortality, Length of Stay, and Cost Associated with Hospitalized Adult Cancer Patients with Febrile Neutropenia. Asian Pacific J. Cancer Prev. 2013, 14, 1115–1119. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, X.; Ji, W.; Lu, J.; Cui, J.; Li, W. The Efficacy of Different Inflammatory Markers for the Prognosis of Patients with Malignant Tumors. J. Inflamm. Res. 2021, 14, 5769–5785. [Google Scholar] [CrossRef]
- Guddati, A.K.; Komiya, T. Analysis of outcomes and disposition in hospitalized patients with head and neck cancer over 15 years. J. Clin. Oncol. 2021, 39, e18021. [Google Scholar] [CrossRef]
- Pęczek, P.; Gajda, M.; Rutkowski, K.; Fudalej, M.; Deptała, A.; Badowska-Kozakiewicz, A.M. Cancer-associated inflammation: Pathophysiology and clinical significance. J. Cancer Res. Clin. Oncol. 2023, 149, 2657–2672. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 2006, 72, 1605–1621. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta-Mol. Cell Res. 2014, 1843, 2563–2582. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Janciauskiene, S.; Wrenger, S.; Günzel, S.; Gründing, A.R.; Golpon, H.; Welte, T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front. Oncol. 2021, 11, 622076. [Google Scholar] [CrossRef]
- Karra, S.; Gurushankari, B.; Rajalekshmy, M.R.; Elamurugan, T.P.; Mahalakshmy, T.; Kate, V.; Nanda, N.; Rajesh, N.G.; Shankar, G. Diagnostic Utility of NLR, PLR and MLR in Early Diagnosis of Gastric Cancer: An Analytical Cross-Sectional Study. J. Gastrointest. Cancer 2023, 54, 1322–1330. [Google Scholar] [CrossRef]
- Stojkovic Lalosevic, M.; Pavlovic Markovic, A.; Stankovic, S.; Stojkovic, M.; Dimitrijevic, I.; Radoman Vujacic, I.; Lalic, D.; Milovanovic, T.; Dumic, I.; Krivokapic, Z. Combined Diagnostic Efficacy of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Mean Platelet Volume (MPV) as Biomarkers of Systemic Inflammation in the Diagnosis of Colorectal Cancer. Dis. Markers 2019, 2019, 6036979. [Google Scholar] [CrossRef]
- Nguyen, M.L.T.; Pham, C.; Le, Q.V.; Nham, P.L.T.; Tran, D.H.; Le, T.S.; Hoang, V.T.; Can, V.M.; Nguyen, L.T.; Bui, K.C. The diagnostic and prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio on gastric cancer patients. Medicine 2023, 102, e34357. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.N. Quantitative change of serum protein and immunoglobulin in patients with solid cancers. J. Surg. Oncol. 1977, 9, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Suh, B.; Park, S.; Shin, D.W.; Yun, J.M.; Keam, B.; Yang, H.-K.; Ahn, E.; Lee, H.; Park, J.H.; Cho, B. Low albumin-to-globulin ratio associated with cancer incidence and mortality in generally healthy adults. Ann. Oncol. 2014, 25, 2260–2266. [Google Scholar] [CrossRef]
- Chen, J.; Xie, C.; Yang, Y.; Yang, S.; Huang, J.; Ye, F.; Lin, Z.; Tong, L.; Liu, J. Association between albumin-to-globulin ratio and the risk of overall survival in advanced non-small cell lung cancer patients with anlotinib treatment: A retrospective cohort study. BMC Pulm. Med. 2023, 23, 275. [Google Scholar] [CrossRef]
- Antonucci, F.; Di Carlo, D.; Falcone, M. Evaluation of a potential prognostic parameter for the inflammatory status in COVID-19 patients: The inflammatory protein ratio. Electrophoresis 2022, 43, 1647–1654. [Google Scholar] [CrossRef]
- WHO Classification of Tumours. Available online: https://tumourclassification.iarc.who.int/welcome/. (accessed on 4 April 2025).
- Kim, E.-S.; Kim, S.Y.; Moon, A. C-Reactive Protein Signaling Pathways in Tumor Progression. Biomol. Ther. 2023, 31, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Rossi, J.M.; Neelapu, S.S.; Jacobson, C.A.; Miklos, D.B.; Ghobadi, A.; Oluwole, O.O.; Reagan, P.M.; Lekakis, L.J.; Lin, Y.; et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 4898–4911. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, C.; Zhang, J.; Zhang, Y.; Yuan, L.; Yu, P.; Wang, Y.; Bao, Z.; Cao, M.; Ruan, R.; et al. Prognostic significance of inflammatory and nutritional markers in perioperative period for patients with advanced gastric cancer. BMC Cancer 2023, 23, 5. [Google Scholar] [CrossRef]
- Parosanu, A.I.; Pirlog, C.F.; Slavu, C.O.; Stanciu, I.M.; Cotan, H.-T.; Vrabie, R.C.; Popa, A.-M.; Olaru, M.; Iaciu, C.; Bratu, L.I.; et al. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Patients with Metastatic Renal Cell Carcinoma. Curr. Oncol. 2023, 30, 2457–2464. [Google Scholar] [CrossRef]
- Howard, R.; Kanetsky, P.A.; Egan, K.M. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci. Rep. 2019, 9, 19673. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-J.; Cui, M.-T.; Liang, Z.-W.; Wang, W.-J.; Jiang, M.; Xu, M.-D.; Wu, M.-Y.; Shen, M.; Li, W.; Gao, Y.; et al. Prognostic values of platelet-associated indicators in advanced breast cancer. Transl. Cancer Res. 2019, 8, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.; Ghahari, M.; Bitaraf, M.; Fard, E.S.; Haddad, M.; Momeni, S.A.; Inanloo, S.H.; Ghahari, P.; Mohamoud, M.M.; Mohamadzadeh, M.; et al. Prognostic Value of NLR, PLR, SII, and dNLR in Urothelial Bladder Cancer Following Radical Cystectomy. Clin. Genitourin. Cancer 2024, 22, 102144. [Google Scholar] [CrossRef]
- Qin, L. The predictive value of NLR, PLR and MLR in the differential diagnosis of benign uterine diseases and endometrial malignant tumors. Discov. Oncol. 2024, 15, 91. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, D. The prognostic value of systemic immune-inflammation index (SII) in patients after radical operation for carcinoma of stomach in gastric cancer. J. Gastrointest. Oncol. 2019, 10, 965–978. [Google Scholar] [CrossRef]
- Wahab, M.R.A.; Palaniyandi, T.; Ravi, M.; Viswanathan, S.; Baskar, G.; Surendran, H.; Gangadharan, S.G.D.; Rajendran, B.K. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol.-Res. Pract. 2023, 250, 154812. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.C.; Rajab, I.M.; Alebraheem, M.; Potempa, L.A. C-Reactive Protein and Cancer—Diagnostic and Therapeutic Insights. Front. Immunol. 2020, 11, 595835. [Google Scholar] [CrossRef]
- Fang, T.; Wang, Y.; Yin, X.; Zhai, Z.; Zhang, Y.; Yang, Y.; You, Q.; Li, Z.; Ma, Y.; Li, C.; et al. Diagnostic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. J. Immunol. Res. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Fest, J.; Ruiter, R.; Mulder, M.; Groot Koerkamp, B.; Ikram, M.A.; Stricker, B.H.; van Eijck, C.H.J. The systemic immune-inflammation index is associated with an increased risk of incident cancer—A population-based cohort study. Int. J. Cancer 2020, 146, 692–698. [Google Scholar] [CrossRef]
- Vural, S.; Muhtaroğlu, A.; Güngör, M. Systemic immune-inflammation index: A new marker in differentiation of different thyroid diseases. Medicine 2023, 102, e34596. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Chen, Z.; Sun, X.; Zhao, M.; Wu, Q.; Hao, J. The Diagnostic Value of Systemic Immune-Inflammatory Index (SII) and Lymphocyte–Albumin–Neutrophil Ratio (LANR) in Chronic Obstructive Pulmonary Disease with Lung Cancer. J. Inflamm. Res. 2024, 17, 5555–5565. [Google Scholar] [CrossRef] [PubMed]
- Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.P.; Müller, M.; Blander, J.M.; Tacke, F.; Trautwein, C. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 2010, 207, 1453–1464. [Google Scholar] [CrossRef]
- Bode, J.G.; Albrecht, U.; Häussinger, D.; Heinrich, P.C.; Schaper, F. Hepatic acute phase proteins—Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur. J. Cell Biol. 2012, 91, 496–505. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, T.X.; Horita, T.J.; Kasravi, B. Understanding and interpreting serum protein electrophoresis. Am. Fam. Physician 2005, 71, 105–112. [Google Scholar]
- Sheinenzon, A.; Shehadeh, M.; Michelis, R.; Shaoul, E.; Ronen, O. Serum albumin levels and inflammation. Int. J. Biol. Macromol. 2021, 184, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Vavricka, S.R.; Burri, E.; Beglinger, C.; Degen, L.; Manz, M. Serum Protein Electrophoresis: An Underused but Very Useful Test. Digestion 2009, 79, 203–210. [Google Scholar] [CrossRef]
- Ofori, E.K.; Clinton, E.B.; Acheampong, O.D.; Anane, H.A.; Amponsah, S.K.; Su, J.; Amanquah, S.D. Biochemical markers of nephrotic syndrome: An observational, cross-sectional study. Heliyon 2023, 9, e15198. [Google Scholar] [CrossRef]
- Active Cancer. Available online: https://www.nice.org.uk/guidance/ng158/chapter/recommendations#active-cancer. (accessed on 4 April 2025).
Digestive | 14 (4.5%) |
Thoracic | 10 (3.2%) |
Breast | 6 (1.9%) |
Urinary and Male Genital | 4 (1.3%) |
Head and Neck | 2 (0.6%) |
Soft Tissue and Bone | 2 (0.6%) |
Endocrine | 2 (0.6%) |
Skin | 1 (0.3%) |
Female Genital | 1 (0.3%) |
No Malignancy n. 270 (86.5%) | Malignancy n. 42 (13.5%) | p Value | |
---|---|---|---|
Age, years | 70.0 (58.0–81.0) | 72.5 (66.3–83.5) | 0.151 |
Genre F, n (%) | 144 (53.3) | 19 (45.2) | 0.407 |
Haemoglobin, g/dL | 12.6 (11.0–14.0) | 11.0 (9.0–12.5) | <0.001 |
WBC, n/mm3 | 7085 (5775–9070) | 8400 (6472–10732) | 0.006 |
Neutrophils, n/mm3 | 4354 (3290–5888) | 6063 (4112–8418) | <0.001 |
Lymphocytes, n/mm3 | 1850 (1345–2295) | 1312 (893–1855) | <0.001 |
Monocytes, n/mm3 | 497 (383–689) | 605 (434–752) | 0.087 |
Platelet, 10^3/mcL | 214 (166–266) | 251 (167–323) | 0.007 |
Albumin, g/dL | 3.6 ±0.5 | 2.8 ±0.5 | <0.001 |
Albumin, % | 55.8 ±6.3 | 46.5 ±7.6 | <0.001 |
α1 globulin, % | 4.0 (3.2–4.8) | 5.4 (4.3–7.3) | <0.001 |
α2 globulin, % | 10.4 (8.7–12.1) | 13.3 (11.9–16.8) | <0.001 |
Creatinine, mg/dL | 0.87 (0.73–1.10) | 0.78 (0.651.33) | 0.893 |
CRP, ng/mL | 3.6 (1.3–15.3) | 31.0 (10.7–89.2) | <0.001 |
IPR | 25.5 (21.7–31.2) | 40.4 (34.5–53.3) | <0.001 |
NLR | 2.3 (1.6–3.5) | 4.4 (2.2–8.0) | <0.001 |
PLR | 119.2 (85.9–169.0) | 184.8 (104.9–349.5) | <0.001 |
MLR | 0.27 (0.19–0.43) | 0.39 (0.29–0.71) | <0.001 |
SII | 505 (294–817) | 940 (560–2727) | <0.001 |
AUC (95% CI) | Sensitivity, % | Specificity, % | +LR | −LR | PPV, % | NPV, % | z Statistic | p Value | |
---|---|---|---|---|---|---|---|---|---|
IPR | 0.868 (0.825–0.903) | 88.1 | 75.2 | 3.55 | 0.16 | 35.7 | 97.6 | 14.7 | <0.001 |
CRP, ng/mL | 0.790 (0.740–0.834) | 82.9 | 68.4 | 2.63 | 0.25 | 29.1 | 96.3 | 8.1 | <0.001 |
NLR | 0.717 (0.664–0.767) | 71.4 | 68.3 | 2.25 | 0.42 | 26.0 | 93.9 | 5.0 | <0.001 |
PLR | 0.707 (0.652–0.757) | 64.3 | 71.4 | 2.25 | 0.50 | 26.0 | 92.8 | 4.3 | <0.001 |
MLR | 0.718 (0.664–0.768) | 85.7 | 50.6 | 1.73 | 0.28 | 21.3 | 95.8 | 5.6 | <0.001 |
SII | 0.730 (0.677–0.779) | 71.4 | 69.7 | 2.35 | 0.41 | 26.9 | 94.0 | 5.1 | <0.001 |
AUC Difference (95% CI) | z Statistic | p Value | |
---|---|---|---|
CRP, ng/mL | 0.078 (0.028–0.120) | 3.178 | 0.001 |
NLR | 0.151 (0.069–0.241) | 3.548 | <0.001 |
PLR | 0.161 (0.072–0.260) | 3.411 | <0.001 |
MLR | 0.150 (0.083–0.222) | 4.320 | <0.001 |
SII | 0.138 (0.057–0.232) | 3.240 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Buglio, A.; Bellanti, F.; Carapellese, R.M.; Villani, R.; Sangineto, M.; Romano, A.D.; Vendemiale, G.; Serviddio, G. Evaluating the Inflammatory Protein Ratio (IPR) as an Inflammation-Based Biomarker for Cancer Diagnosis. Int. J. Mol. Sci. 2025, 26, 4375. https://doi.org/10.3390/ijms26094375
Lo Buglio A, Bellanti F, Carapellese RM, Villani R, Sangineto M, Romano AD, Vendemiale G, Serviddio G. Evaluating the Inflammatory Protein Ratio (IPR) as an Inflammation-Based Biomarker for Cancer Diagnosis. International Journal of Molecular Sciences. 2025; 26(9):4375. https://doi.org/10.3390/ijms26094375
Chicago/Turabian StyleLo Buglio, Aurelio, Francesco Bellanti, Rosanna Maria Carapellese, Rosanna Villani, Moris Sangineto, Antonino Davide Romano, Gianluigi Vendemiale, and Gaetano Serviddio. 2025. "Evaluating the Inflammatory Protein Ratio (IPR) as an Inflammation-Based Biomarker for Cancer Diagnosis" International Journal of Molecular Sciences 26, no. 9: 4375. https://doi.org/10.3390/ijms26094375
APA StyleLo Buglio, A., Bellanti, F., Carapellese, R. M., Villani, R., Sangineto, M., Romano, A. D., Vendemiale, G., & Serviddio, G. (2025). Evaluating the Inflammatory Protein Ratio (IPR) as an Inflammation-Based Biomarker for Cancer Diagnosis. International Journal of Molecular Sciences, 26(9), 4375. https://doi.org/10.3390/ijms26094375