Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones
Abstract
:1. Introduction
2. The RAS
3. The Intrarenal RAS
4. Intrarenal Localization of AGT, Renin, and ACE
5. Urinary AGT as a Biomarker of Intrarenal RAS in Diabetic Nephropathy
6. The Role of Isoflavones in the Development of Diabetic Nephropathy
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Selby, N.M.; Taal, M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020, 22 (Suppl. S1), 3–15. [Google Scholar] [CrossRef] [PubMed]
- Zatz, R.; Dunn, B.R.; Meyer, T.W.; Anderson, S.; Rennke, H.G.; Brenner, B.M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Investig. 1986, 77, 1925–1930. [Google Scholar] [CrossRef]
- Hargrove, G.M.; Dufresne, J.; Whiteside, C.; Muruve, D.A.; Wong, N.C. Diabetes mellitus increases endothelin-1 gene transcription in rat kidney. Kidney Int. 2000, 58, 1534–1545. [Google Scholar] [CrossRef]
- Xia, P.; Inoguchi, T.; Kern, T.S.; Engerman, R.L.; Oates, P.J.; King, G.L. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994, 43, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, M.E.; Muggli, E.E. Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. Kidney Int. 2000, 57, 464–475. [Google Scholar] [CrossRef]
- Haneda, M.; Araki, S.; Togawa, M.; Sugimoto, T.; Isono, M.; Kikkawa, R. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997, 46, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.E.; Vranes, D.; Youssef, S.; Stacker, S.A.; Cox, A.J.; Rizkalla, B.; Casley, D.J.; Bach, L.A.; Kelly, D.J.; Gilbert, R.E. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999, 48, 2229–2239. [Google Scholar] [CrossRef]
- Dunlop, M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. Suppl. 2000, 77, S3–S12. [Google Scholar] [CrossRef]
- Soulis-Liparota, T.; Cooper, M.; Papazoglou, D.; Clarke, B.; Jerums, G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 1991, 40, 1328–1334. [Google Scholar] [CrossRef]
- Soldatos, G.; Cooper, M.E. Diabetic nephropathy: Important pathophysiologic mechanisms. Diabetes Res. Clin. Pract. 2008, 82 (Suppl. S1), S75–S79. [Google Scholar] [CrossRef]
- Kobori, H.; Kamiyama, M.; Harrison-Bernard, L.M.; Navar, L.G. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J. Investig. Med. 2013, 61, 256–264. [Google Scholar] [CrossRef]
- Thethi, T.; Kamiyama, M.; Kobori, H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr. Hypertens. Rep. 2012, 14, 160–169. [Google Scholar] [CrossRef]
- Ohashi, N.; Katsurada, A.; Miyata, K.; Satou, R.; Saito, T.; Urushihara, M.; Kobori, H. Activation of reactive oxygen species and the renin-angiotensin system in IgA nephropathy model mice. Clin. Exp. Pharmacol. Physiol. 2009, 36, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, M.; Zsombok, A.; Kobori, H. Urinary angiotensinogen as a novel early biomarker of intrarenal renin-angiotensin system activation in experimental type 1 diabetes. J. Pharmacol. Sci. 2012, 119, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Feng, Y.; Yao, X.D.; Xu, Y.F.; Peng, B.; Liu, M.; Zheng, J.H. Urinary angiotensinogen is elevated in patients with nephrolithiasis. Biomed. Res. Int. 2014, 2014, 349602. [Google Scholar] [CrossRef]
- Wang, J.; Shibayama, Y.; Kobori, H.; Liu, Y.; Kobara, H.; Masaki, T.; Wang, Z.; Nishiyama, A. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS ONE 2017, 12, e0185600. [Google Scholar] [CrossRef]
- Thakuri, B.; Kumar Das, J.; Kumar Roy, A.; Chakraborty, A. Circulating renin-angiotensin systems mediated feedback controls over the mean-arterial pressure. J. Theor. Biol. 2023, 572, 111589. [Google Scholar] [CrossRef]
- Carey, R.M.; Siragy, H.M. The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol. Metab. 2003, 14, 274–281. [Google Scholar] [CrossRef]
- Zheng, J.; Hao, H. Targeting renal damage: The ACE2/Ang-(1-7)/mas axis in chronic kidney disease. Cell Signal 2024, 124, 111413. [Google Scholar] [CrossRef]
- Verano-Braga, T.; Martins, A.L.V.; Motta-Santos, D.; Campagnole-Santos, M.J.; Santos, R.A.S. ACE2 in the renin-angiotensin system. Clin. Sci. 2020, 134, 3063–3078. [Google Scholar] [CrossRef]
- De Bhailis, A.M.; Kalra, P.A. Hypertension and the kidneys. Br. J. Hosp. Med. 2022, 83, 1–11. [Google Scholar] [CrossRef]
- Takimoto-Ohnishi, E.; Murakami, K. Renin-angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019, 69, 581–587. [Google Scholar] [CrossRef]
- Vargas Vargas, R.A.; Varela Millan, J.M.; Fajardo Bonilla, E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. Endocrinol. Diabetes Nutr. 2022, 69, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Dzau, V.J.; Re, R. Tissue angiotensin system in cardiovascular medicine. A paradigm shift? Circulation 1994, 89, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Morton, A.B.; Hyatt, H.; Hinkley, M.J. The Renin-Angiotensin System and Skeletal Muscle. Exerc. Sport. Sci. Rev. 2018, 46, 205–214. [Google Scholar] [CrossRef]
- Mo, C.; Ke, J.; Zhao, D.; Zhang, B. Role of the renin-angiotensin-aldosterone system in bone metabolism. J. Bone Miner. Metab. 2020, 38, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Kobori, H.; Nangaku, M.; Navar, L.G.; Nishiyama, A. The intrarenal renin-angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 2007, 59, 251–287. [Google Scholar] [CrossRef]
- Navar, L.G.; Harrison-Bernard, L.M.; Nishiyama, A.; Kobori, H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 2002, 39 Pt 2, 316–322. [Google Scholar] [CrossRef]
- Wu, C.H.; Mohammadmoradi, S.; Chen, J.Z.; Sawada, H.; Daugherty, A.; Lu, H.S. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e108–e116. [Google Scholar] [CrossRef]
- Baltatu, O.; Silva, J.A., Jr.; Ganten, D.; Bader, M. The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension 2000, 35 Pt 2, 409–412. [Google Scholar] [CrossRef]
- Sun, K.; Sun, X.; Sun, J.; Jiang, Y.; Lin, F.; Kong, F.; Li, F.; Zhu, J.; Huan, L.; Zheng, B.; et al. Tissue Renin-Angiotensin System (tRAS) Induce Intervertebral Disc Degeneration by Activating Oxidative Stress and Inflammatory Reaction. Oxid. Med. Cell Longev. 2021, 2021, 3225439. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Davisson, R.L.; Hardy, D.O.; Zhu, L.J.; Merrill, D.C.; Catterall, J.F.; Sigmund, C.D. The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice. J. Biol. Chem. 1997, 272, 28142–28148. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Mullins, J.J.; Bunnemann, B.; Metzger, R.; Hilgenfeldt, U.; Zimmermann, F.; Jacob, H.; Fuxe, K.; Ganten, D.; Kaling, M. High blood pressure in transgenic mice carrying the rat angiotensinogen gene. EMBO J. 1992, 11, 821–827. [Google Scholar] [CrossRef]
- Urushihara, M.; Kondo, S.; Kagami, S.; Kobori, H. Urinary angiotensinogen accurately reflects intrarenal Renin-Angiotensin system activity. Am. J. Nephrol. 2010, 31, 318–325. [Google Scholar] [CrossRef]
- Kobori, H.; Urushihara, M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflug. Arch. 2013, 465, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Li, Z.; Lang, C.N.; Schmid, B.; Lang, F.K.; Grad, S.; Alini, M.; Richards, R.G.; Schmal, H.; Sudkamp, N.; et al. The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021, 10, 650. [Google Scholar] [CrossRef]
- Ingelfinger, J.R.; Zuo, W.M.; Fon, E.A.; Ellison, K.E.; Dzau, V.J. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J. Clin. Investig. 1990, 85, 417–423. [Google Scholar] [CrossRef]
- Pohl, M.; Kaminski, H.; Castrop, H.; Bader, M.; Himmerkus, N.; Bleich, M.; Bachmann, S.; Theilig, F. Intrarenal renin angiotensin system revisited: Role of megalin-dependent endocytosis along the proximal nephron. J. Biol. Chem. 2010, 285, 41935–41946. [Google Scholar] [CrossRef]
- Casarini, D.E.; Boim, M.A.; Stella, R.C.; Krieger-Azzolini, M.H.; Krieger, J.E.; Schor, N. Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron. Am. J. Physiol. 1997, 272 Pt 2, F405–F409. [Google Scholar] [CrossRef]
- Leyssac, P.P. Changes in single nephron renin release are mediated by tubular fluid flow rate. Kidney Int. 1986, 30, 332–339. [Google Scholar] [CrossRef]
- Yanagawa, N.; Capparelli, A.W.; Jo, O.D.; Friedal, A.; Barrett, J.D.; Eggena, P. Production of angiotensinogen and renin-like activity by rabbit proximal tubular cells in culture. Kidney Int. 1991, 39, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Henrich, W.L.; McAllister, E.A.; Eskue, A.; Miller, T.; Moe, O.W. Renin regulation in cultured proximal tubular cells. Hypertension 1996, 27, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Moe, O.W.; Ujiie, K.; Star, R.A.; Miller, R.T.; Widell, J.; Alpern, R.J.; Henrich, W.L. Renin expression in renal proximal tubule. J. Clin. Investig. 1993, 91, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.J.; Ye, M.; Wysocki, J.; William, J.; Lloveras, J.; Batlle, D. Localization of ACE2 in the renal vasculature: Amplification by angiotensin II type 1 receptor blockade using telmisartan. Am. J. Physiol. Ren. Physiol. 2009, 296, F398–F405. [Google Scholar] [CrossRef]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef]
- Eknoyan, G.; Hostetter, T.; Bakris, G.L.; Hebert, L.; Levey, A.S.; Parving, H.H.; Steffes, M.W.; Toto, R. Proteinuria and other markers of chronic kidney disease: A position statement of the national kidney foundation (NKF) and the national institute of diabetes and digestive and kidney diseases (NIDDK). Am. J. Kidney Dis. 2003, 42, 617–622. [Google Scholar] [CrossRef]
- Diabetes, C.; Complications Trial Research, G.; Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar]
- Perkins, B.A.; Ficociello, L.H.; Silva, K.H.; Finkelstein, D.M.; Warram, J.H.; Krolewski, A.S. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 2003, 348, 2285–2293. [Google Scholar] [CrossRef]
- Fiseha, T. Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients. Biomark. Res. 2015, 3, 16. [Google Scholar] [CrossRef]
- Moresco, R.N.; Sangoi, M.B.; De Carvalho, J.A.; Tatsch, E.; Bochi, G.V. Diabetic nephropathy: Traditional to proteomic markers. Clin. Chim. Acta 2013, 421, 17–30. [Google Scholar] [CrossRef]
- Watanabe, H. Oxidized Albumin: Evaluation of Oxidative Stress as a Marker for the Progression of Kidney Disease. Biol. Pharm. Bull. 2022, 45, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Iijima, T.; Suzuki, S.; Sekizuka, K.; Hishiki, T.; Yagame, M.; Jinde, K.; Saotome, N.; Suzuki, D.; Sakai, H.; Tomino, Y. Follow-up study on urinary type IV collagen in patients with early stage diabetic nephropathy. J. Clin. Lab. Anal. 1998, 12, 378–382. [Google Scholar] [CrossRef]
- Lee, M.J.; Jung, C.H.; Kang, Y.M.; Jang, J.E.; Leem, J.; Park, J.Y.; Lee, W.J. Serum Ceruloplasmin Level as a Predictor for the Progression of Diabetic Nephropathy in Korean Men with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2015, 39, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Hellemons, M.E.; Kerschbaum, J.; Bakker, S.J.; Neuwirt, H.; Mayer, B.; Mayer, G.; de Zeeuw, D.; Lambers Heerspink, H.J.; Rudnicki, M. Validity of biomarkers predicting onset or progression of nephropathy in patients with Type 2 diabetes: A systematic review. Diabet. Med. 2012, 29, 567–577. [Google Scholar] [CrossRef]
- Zhuang, Z.; Bai, Q.; Lata, A.; Liang, Y.; Zheng, D.; Wang, Y. Changes of urinary angiotensinogen concentration and its association with urinary proteins in diabetic rats. Int. J. Clin. Exp. Pathol. 2015, 8, 11946–11956. [Google Scholar]
- Karimi, F.; Moazamfard, M.; Taghvaeefar, R.; Sohrabipour, S.; Dehghani, A.; Azizi, R.; Dinarvand, N. Early Detection of Diabetic Nephropathy Based on Urinary and Serum Biomarkers: An Updated Systematic Review. Adv. Biomed. Res. 2024, 13, 104. [Google Scholar]
- Zhou, Y.; Zhang, Y.; Chen, J.; Wang, T.; Li, H.; Wu, F.; Shang, J.; Zhao, Z. Diagnostic value of alpha1-MG and URBP in early diabetic renal impairment. Front. Physiol. 2023, 14, 1173982. [Google Scholar] [CrossRef]
- Fiseha, T.; Tamir, Z. Urinary Markers of Tubular Injury in Early Diabetic Nephropathy. Int. J. Nephrol. 2016, 2016, 4647685. [Google Scholar] [CrossRef]
- Liu, H.; Feng, J.; Tang, L. Early renal structural changes and potential biomarkers in diabetic nephropathy. Front. Physiol. 2022, 13, 1020443. [Google Scholar] [CrossRef]
- Motawi, T.K.; Shehata, N.I.; ElNokeety, M.M.; El-Emady, Y.F. Potential serum biomarkers for early detection of diabetic nephropathy. Diabetes Res. Clin. Pract. 2018, 136, 150–158. [Google Scholar] [CrossRef]
- Veiga, G.; Alves, B.; Perez, M.; Alcantara, L.V.; Raimundo, J.; Zambrano, L.; Encina, J.; Pereira, E.C.; Bacci, M.; Murad, N.; et al. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy. J. Clin. Pathol. 2020, 73, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Aziz, W.M.; Shaker, S.E.; Fayed, D.B.; Shawky, H. Urinary transferrin and proinflammatory markers predict the earliest diabetic nephropathy onset. Biomarkers 2022, 27, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.L.; Liu, T.T.; Lan, H.Y. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 7881. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.E.; Akdeniz, A.; Weitz, S.; Usinger, W.R.; Molineaux, C.; Jones, S.E.; Langham, R.G.; Jerums, G. Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care 2003, 26, 2632–2636. [Google Scholar] [CrossRef]
- Duran-Salgado, M.B.; Rubio-Guerra, A.F. Diabetic nephropathy and inflammation. World J. Diabetes 2014, 5, 393–398. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, S.; Luo, Z.; He, P.; Ma, X.; Ma, Y.; Wang, J.; Zheng, L.; Tian, N.; Dong, S.; et al. VCAM1: An effective diagnostic marker related to immune cell infiltration in diabetic nephropathy. Front. Endocrinol. 2024, 15, 1426913. [Google Scholar] [CrossRef]
- Inoue, K.; Wada, J.; Eguchi, J.; Nakatsuka, A.; Teshigawara, S.; Murakami, K.; Ogawa, D.; Terami, T.; Katayama, A.; Tone, A.; et al. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS ONE 2013, 8, e77118. [Google Scholar] [CrossRef]
- Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9. [Google Scholar] [CrossRef]
- Kerkeni, M.; Saidi, A.; Bouzidi, H.; Letaief, A.; Ben Yahia, S.; Hammami, M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab Vasc. Dis. Res. 2013, 10, 239–245. [Google Scholar] [CrossRef]
- Khosravi, N.; Zadkarami, M.; Chobdar, F.; Hoseini, R.; Khalesi, N.; Panahi, P.; Karimi, A. The Value of Urinary Cystatin C Level to Predict Neonatal Kidney Injury. Curr. Pharm. Des. 2018, 24, 3002–3004. [Google Scholar] [CrossRef]
- Benoit, S.W.; Ciccia, E.A.; Devarajan, P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert. Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef]
- Gudehithlu, K.P.; Hart, P.; Joshi, A.; Garcia-Gomez, I.; Cimbaluk, D.J.; Dunea, G.; Arruda, J.A.L.; Singh, A.K. Urine exosomal ceruloplasmin: A potential early biomarker of underlying kidney disease. Clin. Exp. Nephrol. 2019, 23, 1013–1021. [Google Scholar] [CrossRef]
- Soltani-Fard, E.; Taghvimi, S.; Karimi, F.; Vahedi, F.; Khatami, S.H.; Behrooj, H.; Deylami Hayati, M.; Movahedpour, A.; Ghasemi, H. Urinary biomarkers in diabetic nephropathy. Clin. Chim. Acta 2024, 561, 119762. [Google Scholar] [CrossRef] [PubMed]
- Balu, D.; Krishnan, V.; Krishnamoorthy, V.; Singh, R.B.S.; Narayanasamy, S.; Ramanathan, G. Does serum kidney injury molecule-1 predict early diabetic nephropathy: A comparative study with microalbuminuria. Ann. Afr. Med. 2022, 21, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.N.D.; Gia, B.N.; Thi, H.L.L.; Thi, T.N.C.; Thanh, H.P. Evaluation of urinary L-FABP as an early marker for diabetic nephropathy in type 2 diabetic patients. J. Med. Biochem. 2020, 39, 224–230. [Google Scholar]
- Najafi, L.; Keshtkar Rajabi, S.; Pirsaheb, S.; Keyvani, H.; Khajavi, A.; Shati, M.; Hadavand, F.; Amouzegar, A. Assessment of Serum and Urine Neurophil Gelatinase- Associated Lipocalin (s-NGAL and u-NGAL) Level as a Predictive Factor of Disease Progression in Diabetic Nephropathy in Type 2 DM. Iran. J. Kidney Dis. 2021, 15, 270–278. [Google Scholar]
- Omozee, E.B.; Okaka, E.I.; Edo, A.E.; Obika, L.F. Urinary N-acetyl-beta-d-glucosaminidase levels in diabetic adults. J. Lab. Physicians 2019, 11, 1–4. [Google Scholar] [CrossRef]
- An, Z.; Qin, J.; Bo, W.; Li, H.; Jiang, L.; Li, X.; Jiang, J. Prognostic Value of Serum Interleukin-6, NF-kappaB plus MCP-1 Assay in Patients with Diabetic Nephropathy. Dis. Markers 2022, 2022, 4428484. [Google Scholar] [CrossRef]
- Chakraborty, R.; Parveen, R.; Varshney, P.; Kapur, P.; Khatoon, S.; Saha, N.; Agarwal, N.B. Elevated urinary IL-36alpha and IL-18 levels are associated with diabetic nephropathy in patients with type 2 diabetes mellitus. Minerva Endocrinol. 2021, 46, 226–232. [Google Scholar] [CrossRef]
- Chuang, G.T.; Kremer, D.; Huang, C.H.; Alkaff, F.F.; Lin, C.H.; Tseng, T.L.; Laverman, G.D.; Bakker, S.J.L.; Chuang, L.M. Urinary Fetuin-A Fragments Predict Progressive Estimated Glomerular Filtration Rate Decline in Two Independent Type 2 Diabetes Cohorts of Different Ethnicities. Am. J. Nephrol. 2024, 55, 106–114. [Google Scholar] [CrossRef]
- Mamilly, L.; Mastrandrea, L.D.; Mosquera Vasquez, C.; Klamer, B.; Kallash, M.; Aldughiem, A. Evidence of Early Diabetic Nephropathy in Pediatric Type 1 Diabetes. Front. Endocrinol. 2021, 12, 669954. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Lu, Z.; Zhang, W.; Bai, Y.; Pei, D.; Li, L. Serum Cystatin C Trajectory Is a Marker Associated With Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 824279. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.L.; Kim, M.H.; Lee, W.I.; Kang, S.Y. Cystatin C as an early marker of diabetic nephropathy in patients with type 2 diabetes. Clin. Lab. 2013, 59, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Arceo, E.S.; Dizon, G.A.; Tiongco, R.E.G. Serum cystatin C as an early marker of nephropathy among type 2 diabetics: A meta-analysis. Diabetes Metab. Syndr. 2019, 13, 3093–3097. [Google Scholar] [CrossRef]
- Elsayed, M.S.; El Badawy, A.; Ahmed, A.; Omar, R.; Mohamed, A. Serum cystatin C as an indicator for early detection of diabetic nephropathy in type 2 diabetes mellitus. Diabetes Metab. Syndr. 2019, 13, 374–381. [Google Scholar] [CrossRef]
- Hassan, M.; Hatata, E.Z.; Al-Arman, M.; Aboelnaga, M.M. Urinary cystatin C as a biomarker of early renal dysfunction in type 2 diabetic patients. Diabetes Metab. Syndr. 2021, 15, 102152. [Google Scholar] [CrossRef]
- Kamiyama, M.; Garner, M.K.; Farragut, K.M.; Sofue, T.; Hara, T.; Morikawa, T.; Konishi, Y.; Imanishi, M.; Nishiyama, A.; Kobori, H. Detailed localization of augmented angiotensinogen mRNA and protein in proximal tubule segments of diabetic kidneys in rats and humans. Int. J. Biol. Sci. 2014, 10, 530–542. [Google Scholar] [CrossRef]
- Hsieh, T.J.; Fustier, P.; Zhang, S.L.; Filep, J.G.; Tang, S.S.; Ingelfinger, J.R.; Fantus, I.G.; Hamet, P.; Chan, J.S. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology 2003, 144, 4338–4349. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, T.; Qiao, Y.; Liu, D.; Yang, L.; Mao, H.; Ma, F.; Wang, Y.; Peng, L.; Zhan, Y. Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols. Front. Immunol. 2023, 14, 1185317. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, J.; Li, C.; Gong, X.; Gui, Z.; Huang, J.; Zhang, Y.; Liu, Y.; Ye, X.; Li, X. Epiberberine ameliorated diabetic nephropathy by inactivating the angiotensinogen (Agt) to repress TGFbeta/Smad2 pathway. Phytomedicine 2021, 83, 153488. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Kamiyama, M.; Ookawa, M.; Saito, R.; Tange, N.; Hashizume, M.; Matsunaga, M.; Yokota, R.; Yoshihara, A.; Iwamoto, T. Isoflavones Inhibit Hydrogen Peroxide-Induced Angiotensinogen Secretion in Mesangial Cells. Curr. Top. Nutraceutical Res. 2024, 22, 624–628. [Google Scholar]
- Kurylowicz, A. The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int. J. Mol. Sci. 2020, 22, 218. [Google Scholar] [CrossRef] [PubMed]
- Jheng, H.F.; Hayashi, K.; Matsumura, Y.; Kawada, T.; Seno, S.; Matsuda, H.; Inoue, K.; Nomura, W.; Takahashi, H.; Goto, T. Anti-Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Mol. Nutr. Food Res. 2020, 64, e2000015. [Google Scholar] [CrossRef]
- Yang, S.; Ma, C.; Wu, H.; Zhang, H.; Yuan, F.; Yang, G.; Yang, Q.; Jia, L.; Liang, Z.; Kang, L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol. Res. 2020, 153, 104678. [Google Scholar] [CrossRef]
- Amin, F.M.; Shehatou, G.S.G.; Nader, M.A.; Abdelaziz, R.R. Piperine mitigates aortic vasculopathy in streptozotocin-diabetic rats via targeting TXNIP-NLRP3 signaling. Life Sci. 2023, 314, 121275. [Google Scholar] [CrossRef]
- Li, Y.; Ou, S.; Liu, Q.; Gan, L.; Zhang, L.; Wang, Y.; Qin, J.; Liu, J.; Wu, W. Genistein improves mitochondrial function and inflammatory in rats with diabetic nephropathy via inhibiting MAPK/NF-kappaB pathway. Acta Cir. Bras. 2022, 37, e370601. [Google Scholar] [CrossRef]
- Kim, M.J.; Lim, Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediat. Inflamm. 2013, 2013, 510212. [Google Scholar] [CrossRef]
- Jia, Q.; Yang, R.; Liu, X.F.; Ma, S.F.; Wang, L. Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Mol. Med. Rep. 2019, 19, 423–431. [Google Scholar] [CrossRef]
- Zhu, H.; Zhong, S.; Yan, H.; Wang, K.; Chen, L.; Zhou, M.; Li, Y. Resveratrol reverts Streptozotocin-induced diabetic nephropathy. Front. Biosci. 2020, 25, 699–709. [Google Scholar]
- Sattarinezhad, A.; Roozbeh, J.; Shirazi Yeganeh, B.; Omrani, G.R.; Shams, M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 2019, 45, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huo, Z.; Jia, X.; Xiong, Y.; Li, B.; Zhang, L.; Li, X.; Li, X.; Fang, Y.; Dong, X.; et al. (+)-Catechin ameliorates diabetic nephropathy injury by inhibiting endoplasmic reticulum stress-related NLRP3-mediated inflammation. Food Funct. 2024, 15, 5450–5465. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Yang, Y.; Qiao, Y.; Zheng, Y.; Yu, X.; Liu, F.; Wang, H.; Zheng, B.; Pan, S.; Ren, K.; et al. Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating Nrf2/HO-1 Signaling Pathway. Am. J. Chin. Med. 2023, 51, 997–1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Feng, Q.; Yang, M.; Yang, Y.; Nie, J.; Wang, S. Quercetin prevented diabetic nephropathy by inhibiting renal tubular epithelial cell apoptosis via the PI3K/AKT pathway. Phytother. Res. 2024, 38, 3594–3606. [Google Scholar] [CrossRef] [PubMed]
- Oza, M.J.; Kulkarni, Y.A. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci. 2019, 219, 109–121. [Google Scholar] [CrossRef]
- Sagoo, M.K.; Gnudi, L. Diabetic Nephropathy: An Overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar]
Biomarkers | Markers in Urine, Serum, or Urine/Serum | |
---|---|---|
Glomerular injury markers | ||
Albumin Moresco, R. N. et al. [50] | Urine | Urinary albumin levels within the microalbuminuria stage are predictive of end-stage renal disease. There is a large variability and low specificity for diabetic nephropathy. |
Oxidized albumin Watanabe, H. et al. [51] | Serum | Oxidized albumin levels may be useful for the early diagnosis of diabetic kidney disease and predicting renal outcomes. |
Type IV collagen Iijima, T. et al. [52] | Urine | Biomarker for the early stages of diabetic nephropathy. |
Ceruloplasmin Lee, M. J. et al. [53], Hellemons, M. E. et al. [54] | Serum | Serum ceruloplasmin is an independent predictor of the progression of diabetic nephropathy in patients with type 2 diabetes. |
Markers of renal tubular injury | ||
Angiotensinogen Kamiyama et al. [14], Sun, W. et al. [15], Wang, J. et al. [16] Zhuang, Z. et al. [55] | Urine | Biomarker for the early phases of diabetic nephropathy. |
α1-MG Zhou, Y. et al. [57] | Urine | Urinary α1-MG (which measures proximal tubular dysfunction) is useful for the early detection of nephropathy in diabetic subjects. |
KIM-1 Fiseha, T. et al. [58] | Serum and urine | KIM-1 is a sensitive and specific marker of kidney injury, as well as a predictor of prognosis. |
L-FABP Liu, H. et al. [59] | Urine | L-FABP is an independent predictor of the progression of DN irrespective of disease stage. |
NGAL Motawi et al. [60], Veiga et al. [61] | Serum and urine | NGAL can predict albuminuria and be used as a non-invasive tool for the diagnosis, staging, and progression of diabetic nephropathy. |
NAG Fiseha, T. et al. [58] | Urine | Urinary NAG reflects the degree of renal impairment in diabetic nephropathy. |
Inflammatory markers | ||
Inflammatory cytokines | ||
IL-6 Ahmed, S. A. et al. [62] | Serum and urine | Signaling of inflammatory cytokines participates in inflammation responses central to the progression of diabetic nephropathy. |
IL-8 Karimi, F. et al. [56] | Serum and urine | |
IL-10 Karimi, F. et al. [56] | Serum and urine | |
IL-18 Ahmed, S. A. et al. [62] | Serum and urine | |
TNF-α Ahmed, S. A. et al. [62] | Serum and urine | |
Growth factors | ||
TGF-β Wang, L. et al. [63] | Urine | TGF-β is a pleiotropic cytokine, which has been recognized as a key mediator of diabetic nephropathy. |
CTGF Gilbert, R. E. et al. [64] | Serum and urine | CTGF is a biomarker reflecting both glomerular and tubulointerstitial hallmarks of diabetic kidney disease. |
Adhesion molecules | ||
ICAM-1 Duran-Salgado, M. B. et al. [65] | Serum | ICAM1 is a potential biomarker and target for the prediction and treatment of diabetes and diabetic nephropathy. |
VCAM-1 Deng, Y. et al. [66] | Serum | VCAM-1 indicates microvascular complication among patients with type 2 diabetes. |
Fetuin-A Inoue, K. et al. [67] | Serum and urine | Fetuin-A is a risk factor for diabetic nephropathy with microalbuminuria or GFR < 60 mL/min. |
Oxidative stress | ||
8-hydroxy-2′-deoxyguanosine (8-OHdG) Wu, L. L. et al. [68] | Serum | Serum 8-OHdG is a potential biomarker for assessing oxidative stress and DNA damage in patients with diabetes and renal complications. |
Pentosidine Kerkeni, M. et al. [69] | Serum and urine | Pentosidine levels may be a biomarker for microvascular complications in type 2 diabetic patients. |
CKD markers | ||
Cystatin C Khosravi, N. et al. [70] Benoit, S. W. et al. [71] | Serum and urine | Serum cystatin C is a useful marker of early renal impairment in type 2 diabetic patients, as it reflects both a decrease in GFR and an elevated albumin-to-creatinine ratio. |
Authors | Animals/Isoflavone | Function |
---|---|---|
Jheng H.F. et al. [94] | KKAy mice/genistein | Regression of fibrosis |
Yang S. et al. [95] | db/db mice/tectorigenin | Regression of fibrosis |
Amin F.M. et al. [96] | db/db mice/piperine | Regression of mitigation of aortic vasculopathy |
Li Y. et al. [97] | Sprague Dawley (SD) rats with diabetic nephropathy/genistein | Regression of mitigation of aortic vasculopathy mitochondrial function and inflammation |
Kim, M. J. et al. [98] | Alloxan-injected mice/genistein | Regulation of oxidative stress and inflammation |
Jia, Q. et al. [99] | Streptozotocin (STZ) rats/genistein | Alleviation of renal fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiyama, M.; Iijima, K.; Okuzawa, R.; Kawata, R.; Kimura, A.; Shinohara, Y.; Shimada, A.; Yamanaka, M.; Youda, A.; Iwamoto, T. Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones. Int. J. Mol. Sci. 2025, 26, 1443. https://doi.org/10.3390/ijms26041443
Kamiyama M, Iijima K, Okuzawa R, Kawata R, Kimura A, Shinohara Y, Shimada A, Yamanaka M, Youda A, Iwamoto T. Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones. International Journal of Molecular Sciences. 2025; 26(4):1443. https://doi.org/10.3390/ijms26041443
Chicago/Turabian StyleKamiyama, Masumi, Kotoe Iijima, Rema Okuzawa, Ruka Kawata, Airi Kimura, Yuki Shinohara, Ayana Shimada, Mika Yamanaka, Ayuka Youda, and Tamami Iwamoto. 2025. "Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones" International Journal of Molecular Sciences 26, no. 4: 1443. https://doi.org/10.3390/ijms26041443
APA StyleKamiyama, M., Iijima, K., Okuzawa, R., Kawata, R., Kimura, A., Shinohara, Y., Shimada, A., Yamanaka, M., Youda, A., & Iwamoto, T. (2025). Augmented Intrarenal and Urinary Angiotensinogen in Diabetic Nephropathy: The Role of Isoflavones. International Journal of Molecular Sciences, 26(4), 1443. https://doi.org/10.3390/ijms26041443