Flood Forecasting Using Machine Learning Methods

Guest Editors:

Prof. Fi-John Chang
Distinguished Professor, Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
changfj@ntu.edu.tw

Prof. Kuolin Hsu
Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697, USA
kuolinh@uci.edu

Prof. Li-Chiu Chang
Department of Water Resources and Environmental Engineering, Tamkang University, Taiwan
changlc@mail.tku.edu.tw

Deadline for manuscript submissions: closed (31 August 2018)

Message from the Guest Editors

Early flood warning systems with different lead times are promising countermeasures against flood. A collaborative assessment from multiple disciplines, comprising hydrology, remote sensing and meteorology, of the impacts of flood hazards beneficially contributes to model integrity and the precision of flood forecasting. Computing technologies, coupled with big-data mining, have boosted data-driven applications, among which Machine Learning (ML) technology bearing flexibility and scalability in pattern extraction has modernized not only scientific thinking but also predictive applications.

In the context of flood hazard mitigation, methodologically-oriented countermeasures may involve forecasting on reservoir or river flow, tropical cyclone track, and flooding at different lead times and/or scales through modern technologies such as, but not limited to, MLs, big-data mining, multiple data aggregation/ensembling, and model ensembling. Analyses of impacts, risks, uncertainty, vulnerability, resilience and scenarios coupled with policy-oriented suggestions will give insight into flood hazard mitigation. A GIS for visual presentation of inundation is also helpful in decision-making.
Editor-in-Chief

Prof. Dr. Arjen Y. Hoekstra
Twente Water Centre, University of Twente, Enschede, The Netherlands

Message from the Editor-in-Chief

The relevance of water in human development and sustaining life, fuels general and scholarly interest in the world’s water resources. A better understanding of all aspects of water and its relation to food supply, energy production, human health, and the functioning of ecosystems is key in managing this precious resource in a sustainable, efficient and equitable manner. *Water* invites authors to provide innovative original full articles, critical reviews and timely short communications. We ensure a critical review process and a quick turnaround between submission and final decision.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the *Science Citation Index Expanded* (Web of Science), Ei Compendex and other databases.

CiteScore (2018 Scopus data): **2.66**, which equals rank 39/203 (Q1) in 'Water Science and Technology' and rank 34/204 (Q2) in 'Aquatic Science'.

Contact Us

Water
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/water
water@mdpi.com
@Water_MDPI