Surface Acoustic Wave and Bulk Acoustic Wave Sensors

Guest Editors:

Dr. Amelie Hagelauer
Institute for Electronics Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
amelie.hagelauer@fau.de

Prof. Dr. Gerhard Fischerauer
Chair of Measurement and Control Systems, University of Bayreuth, Germany
gerhard.fischerauer@uni-bayreuth.de

Prof. Dr. Robert Weigel
Institute for Electronics Engineering, University of Erlangen-Nuremberg, Germany
robert.weigel@fau.de

Message from the Guest Editors

It has been known for almost four decades that surface acoustic wave (SAW) and, more recently, bulk acoustic wave (BAW) devices can be used as sensors for a multitude of measurements. Physical, chemical, or biological sensors, based on microacoustics, show some distinct advantages compared to other technologies: They are mainly based on oxide ceramics and metals and, thus, can withstand higher temperatures than silicon. Their output signals such as frequency and phase lend themselves well to digital measurement; and they are typically operated at frequencies also used in mobile communications and can be interrogated wirelessly. However, there do not exist many commercial systems based on SAW or BAW sensors. This Special Issue serves to explore the state-of-the-art of the technology and to identify possible routes for further work that might help to overcome innovation hurdles.

- SAW/BAW sensors
- SAW/BAW sensor modeling and signal processing
- signal conditioning
- design and fabrication
- novel applications

Deadline for manuscript submissions:
closed (30 November 2017)
Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Ei Compendex, Inspec (IET) and Scopus.

CiteScore (2018 Scopus data): 3.72; ranked 9/123 in 'Physics and Astronomy: Instrumentation' and 102/661 in 'Electrical and Electronic Engineering.'