Message from the Guest Editor

It has been over 60 years since Sauerbrey reported the principle of the quartz-crystal microbalance (QCM) method. QCM-based sensors are one of the most widespread sensors in terms of convenience and reliability. For example, they can detect the thickness of deposited material, adsorbed gas molecules, humidity, and biomolecules. In recent years, the Internet of Things (IoT) has attracted attention. QCM-based sensors are expected to be a powerful tool for IoT.

This Special Issue is dedicated to the discussion of the state-of-art in QCM sensors, and to challenging applications not only for gas and bio-sensing but also for the primary industries such as agriculture, the aquatic products industry, and the livestock industry. Micro and nanomaterials have been assembled in QCM sensors in the past decade. These challenging, materials-coated, QCM-based sensors are covered in this Special Issue.
Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Ei Compendex, Inspec (IET) and Scopus.

CiteScore 2017 (Scopus): 3.23; ranked 9/116 in 'Physics and Astronomy: Instrumentation' and 100/644 in 'Electrical and Electronic Engineering.'