Laser Based Remote Sensors for Environmental Science: Apparatus, Measurements and Analysis Techniques

Message from the Guest Editor

Dear Colleagues,

Laser-based remote sensing techniques are very promising methodologies. They have become important, sometimes primary, devices in industrial, urban, environmental, safety, and security applications. Concerning the safety and security field, remote sensing monitoring plays a crucial role in providing fast and preventive alarms in the case of intentional (terrorism, war, etc.) or accidental (natural, accident) diffusions of dangerous substances, such chemicals or pathogens. Moreover, remote sensing approaches may avoid people working directly in threatening areas and it may help understand the dangers and to take appropriate countermeasures.

Pollution monitoring is also fundamental to preserve and guarantee a good quality of life, especially in industrial and high-traffic urban areas.

This Special Issue refers to any research in the field of laser-based remote sensing applied to environmental, safety, and security fields. It will accept both original research and review articles about not only the techniques, but also innovative experimental apparatus or devices, and new data analysis techniques.

Dr. Pasqualino Gaudio

Guest Editor
Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Ei Compendex, Inspec (IET) and Scopus.

CiteScore (2018 Scopus data): 3.72; ranked 9/123 in 'Physics and Astronomy: Instrumentation' and 102/661 in 'Electrical and Electronic Engineering'.

Contact Us

Sensors
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/sensors
sensors@mdpi.com
@Sensors_MDPI