Stereo Vision-Based Perception, Navigation and Control for Intelligent Autonomous Systems

Message from the Guest Editors

Vision is one of the most important awareness extensions that can be included in a system. With the technological advances obtained in the development of reliable artificial vision, the interactions between different autonomous systems have become more efficient and versatile.

The emerging role of machine vision in the motion planning and control of intelligent autonomous systems is one of the most discussed topics in multiple research areas (computer vision, robotics, artificial intelligence, assistive devices, etc.). Scene representation methods organize information from all sensors and data sources to build an interface between perception, navigation, and control. Stereo vision systems are among the most commonly used sensors to gather data from 3D environments. Stereo vision applications vary from autonomous driving to human–robot interactions and assisting devices for the visually impaired.
Editors-in-Chief

Prof. Dr. Assefa M. Melesse
Dr. Alexander Star
Prof. Dr. Mehmet Rasit Yuce
Prof. Dr. Eduard Llobet
Prof. Dr. Guillermo Villanueva
Prof. Dr. Vittorio M.N. Passaro
Dr. Davide Brunelli
Dr. Raffaele Bruno
Prof. Dr. Roozbeh Ghaffari
Prof. Dr. Xianbin Wang
Prof. Dr. Mengdao Xing

Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: — free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, Ei Compendex, Inspec, and many other databases.

Journal Rank: JCR - Q1 (Instruments & Instrumentation) / CiteScore - Q1 (Instrumentation)

Contact Us

Sensors
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/sensors
sensors@mdpi.com
@Sensors_MDPI