Wearable Sensors in Healthcare: Methods, Algorithms, Applications

Message from the Guest Editors

Dear Colleagues,

Wearable sensors are currently the object of intense research activity, both in academic groups and industries, including multinational IT companies. A broad variety of wearable sensing technologies have been proposed, such as mechanical sensors for tracking movements and pressure, chemical sensors measuring analytes in biological fluids (e.g., interstitial fluids, breath, sweat, saliva, and tears), and other sensors based on electrical, optical, thermal, and acoustic techniques to sense physiological signals.

In this Special Issue, we seek original research papers or review papers about algorithms for wearable sensors and their application in the medical field. In particular, we look for contributions on:

- algorithms to enhance the performance of wearable sensors in terms of accuracy and precision (e.g. calibration and filtering algorithms)
- algorithms using wearable sensors data to extract medical knowledge (e.g. event detection or prediction)
- methods to provide personalized interventions (e.g. therapy adjustment, behavioral coaching and biofeedback) based on wearable sensors data.

Deadline for manuscript submissions:
31 August 2019
Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Ei Compendex, Inspec (IET) and Scopus.

CiteScore 2017 (Scopus): 3.23; ranked 9/116 in 'Physics and Astronomy: Instrumentation' and 100/644 in 'Electrical and Electronic Engineering.'