Dear Colleagues,

Synthetic Aperture RADAR (SAR) became a well-established and powerful remote sensing technology used worldwide for several applications thanks to the possibility of sensing the Earth surface at night and day and in any weather condition. Recent advances have dramatically raised on SAR monitoring potential by improving spatial resolution, revisit time, swath width, polarimetric capability. Moreover, the present and forthcoming space-borne missions allow SAR imaging at different bands and acquisition modes (e.g. spotlight, wide swath, bistatic, multistatic, geosynchronous). All these advances stimulated the investigation of new processing algorithms, products, and applications able to fully exploit new sensor capabilities (e.g. wide spectral band, short revisit time, multi-angle view), and the large SAR data archive.

For further information, please visit mdpi.com/journal/sensors/special_issues/SAR_techniques_applications.

Dr. Fabio Bovenga
Guest Editor
Message from the Editorial Board

Sensors is a leading journal devoted to fast publication of the latest achievements of technological developments and scientific research in the huge area of physical, chemical and biochemical sensors, including remote sensing and sensor networks. Both experimental and theoretical papers are published, including all aspects of sensor design, technology, proof of concept and application. Sensors organizes Special Issues devoted to specific sensing areas and applications each year.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Ei Compendex, Inspec (IET) and Scopus.

CiteScore (2018 Scopus data): 3.72; ranked 9/123 in 'Physics and Astronomy: Instrumentation' and 102/661 in 'Electrical and Electronic Engineering'.