Remote Sensing of Evapotranspiration (ET)

Guest Editors:

Dr. Prasanna Gowda
USDA-ARS Grazinglands
Research Laboratory, 7207 West Cheyenne Street El Reno OK
73036, USA
prasanna.gowda@ars.usda.gov

Dr. Pradeep Wagle
USDA-ARS Grazinglands
Research Laboratory, 7207 West Cheyenne Street El Reno OK
73036, USA
Pradeep.Wagle@ars.usda.gov

Deadline for manuscript submissions:
closed (31 March 2019)

Message from the Guest Editors

The main goal of this special issue is to report on advances in development and applications of ground-based evapotranspiration (ET) measuring instruments/sensors (Lysimeter, neutron probes, Eddy covariance, Bowen ratio, scintillometer, ET gauges, etc.) as well as remote sensing techniques for mapping ET/crop water use at plot, field, landscape and regional scales. Contributions on ET measurements, modeling and mapping may include (1) evaluation of existing/new instruments for their ability to measure ET/surface energy fluxes; (2) recent advances in remote sensing based ET models; and (3) application of remote sensing based ET models. Papers on coupling of CO2 fluxes and ET, and water use efficiency will also be considered.

- Evapotranspiration
- Water use efficiency
- Thermal remote sensing
- Drought management
- Groundwater management
- Irrigation management
- Watershed modeling
- Surface energy balance models