Guest Editors:

Prof. Jadu Dash
Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
J.Dash@soton.ac.uk

Dr. Matthew Jones
Numerical Terradynamic Simulation Group, The University of Montana, Missoula, MT 59812, USA
matt.jones@ntsg.umt.edu

Dr. Victor Rodriguez-Galiano
Department of Physical Geography and Regional Geographical Analysis, Facultad de Geografía e Historia. Calle Doña María de Padilla s/n. 41004 Sevilla
vrgaliano@us.es

Deadline for manuscript submissions:
31 December 2019

Message from the Guest Editors

Dear Colleagues,

Land surface phenology (LSP) refers to the type of products that seek to quantify and summarize the dynamics of the vegetated land surface at temporal scales from annual to seasonal. Over the last decade, there has been significant advances in data availability, image analysis and processing techniques that resulted in accurate characterization of LSP, from local to global scales. LSP information from satellites is a key variable to demonstrate the response of terrestrial ecosystem to climatic and anthropogenic changes. Moreover, LSP information is increasingly used to distinguish vegetation type and measure crop productivity. The recent launch of new satellite sensors, such as the Sentinel series, can provide the opportunity for improved characterization of LSP and may develop applications that were not possible with available datasets. Despite this, its validation with ground measurements is still challenging due to miss-match in both spatial and temporal scales between the two measurements, distribution of ground measurements and spatial heterogeneity of vegetation types in a satellite sensor pixel.

Prof. Jadu Dash
Dr. Matthew Jones
Dr. Victor Rodriguez-Galiano