Remote Sensing of Tectonic Deformation

Guest Editors:

Dr. Chiara Del Ventisette
Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121, Firenze, Italy
chiara.delventisette@unifi.it

Dr. Guido Luzi
Remote Sensing department, Technological Centre of Telecommunications of Catalunya, Av. Carl Friedrich Gauss n 7, Castelldefels (E-08860), Spain
guido.luzi@cttc.es

Dr. Oriol Monserrat
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Remote Sensing Department, Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona), Spain
oriol.monserrat@cttc.cat

Deadline for manuscript submissions:
closed (31 December 2018)

Message from the Guest Editors

Remote sensing data (GNSS, optical data, radar data, etc.) has been proved to be effective in detecting main fault system and in measuring fault-related deformation in the skin-deep of the Earth’s crust to describe the nature of active faults and related neotectonic features.

Although remote sensing of faulting and tectonics is a recent development relative to traditional field-based or seismological methods, during the last three decades it has developed from theoretical concept to a technique that is revolutionizing how to study the tectonic deformation.

This Special Issue of Remote Sensing focuses on examining the current and future trends of remote sensing to detect and monitoring tectonic deformation focusing on algorithms, applications, methodologies and case studies. New results, reviews and field measurements at a local and regional scale, and applications to analogue models are welcomed.

All types of original research contributions will be considered.