Electrochromic Polymers

Message from the Guest Editors

Electrochromism refers to the alternation of optical absorption or color of an electroactive species by electrochemically induced redox reactions. This intriguing property has shown great promise in applications such as optical switching devices, data storage, displays, auto-dimming mirrors, smart windows, adaptive camouflage, eyewear, and energy storage devices. A number of organic, inorganic, and organic-inorganic hybrid materials have been used to construct electrochromic devices, such as transition metal oxides, inorganic coordination complexes, organic dyes and polymers, and organic-metallic hybrid polymers. Among the different types of electrochromic materials, organic polymers attract much attention because of several advantages such as mechanical flexibility, enhanced processability, easy color tuning, rapid switching and high coloration efficiency.

In order to reflect the current state of the art on the subject and to explore potential future developments, the present Special Issue welcomes submissions on all aspects of electrochromic polymers ranging from synthesis and characterization to structural modification, processing, and new applications.
Message from the Editor-in-Chief

Since its foundation in 2009, Polymers has developed into an internationally renowned, extremely successful open access journal. The editorial team and the editorial board dedicatedly combine open-access publishing and high-quality rigorous peer reviewing. The performance of the journal has proven this strategy to be well-suited and highly successful. This is reflected in the increasing impact factor of Polymers, the most recent one being 2.935.

I would like to invite you to contribute to the success of the journal by sending us your high quality research papers. We would be pleased to welcome you as one of our authors.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus (2017 CiteScore: 3.30), Ei Compendex, CAS, Polymer Library, EBSCOhost and Current Contents - Physical, Chemical & Earth Sciences. Citations available in PubMed, full-text archived in PubMed Central.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.7 days after submission; acceptance to publication is undertaken in 4 days (median values for papers published in this journal in 2018).

Contact Us

Polymers
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
polymers@mdpi.com
@Polymers_MDPI