Special Issue

Photophysical Processes in Non-fullerene Organic Solar Cells

Message from the Guest Editors

In the past few years, the development of non-fullerene acceptors represented by Y6 has greatly improved the power conversion efficiency of organic solar cells. At present, the power conversion efficiency of organic solar cells exceeds 19%, showing their broad commercial prospect. On the one hand, the improvement in the photoelectric conversion efficiency of non-fullerene solar cells benefits from the good photon absorption characteristics of non-fullerene materials in the near-infrared region; on the other hand, this is attributed to their unique photophysical properties, which differ from those of fullerene solar cells. For example, the exciton diffusion length of the newly emerging Y acceptors can exceed 50 nm, which is much longer than that of traditional acceptors and conducive to exciton dissociation in non-fullerene solar cells. However, the physical processes underlying these issues need to be further clarified. We aim to discuss various topics related to the photophysical mechanism in non-fullerene solar cells, including advances in device physics and photoelectric conversion dynamics. Both original research articles and reviews are welcome.

Guest Editors

Dr. Wei Zhang

School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

Dr. Rong Hu

Material Science and Engineering / New Materials Research Institute, Chongqing University of Arts and Science, Chongqing 402171, China

Deadline for manuscript submissions

closed (15 July 2024)

Photonics

an Open Access Journal by MDPI

Impact Factor 1.9 CiteScore 3.5

mdpi.com/si/152494

Photonics
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
photonics@mdpi.com

mdpi.com/journal/photonics

Photonics

an Open Access Journal by MDPI

Impact Factor 1.9 CiteScore 3.5

About the Journal

Message from the Editor-in-Chief

You are invited to contribute a research article or a comprehensive review for consideration and publication in *Photonics* (ISSN 2304-6732). *Photonics* is an online open access journal covering both the fundamental and applications of optics and photonics. *Photonics* strives to provide an avenue to allow authors to disseminate their scientific findings—both theoretical/ simulations and experimental works—in highly accessible peerreviewed journal publications. The manuscript in *Photonics* will be handled with quick turnaround production processing time. We welcome authors to submit their manuscripts for publications in *Photonics*. Our goal in *Photonics* is to enable fast dissemination of high impact works to the scientific community.

Editor-in-Chief

Prof. Dr. Nelson Tansu

School of Electrical and Electronic Engineering (EEE), The University of Adelaide, Adelaide, SA 5005, Australia

Author Benefits

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, and other databases.

Journal Rank:

CiteScore - Q2 (Instrumentation)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 15 days after submission; acceptance to publication is undertaken in 1.9 days (median values for papers published in this journal in the second half of 2025).

