-
First-Principles Investigation of Size Effects on Cohesive Energies of Transition-Metal Nanoclusters
-
Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers
-
A Breakthrough in Photocatalytic Wastewater Treatment: The Incredible Potential of g-C3N4/Titanate Perovskite-Based Nanocomposites
-
The Influences of Pore Blockage by Natural Organic Matter and Pore Dimension Tuning on Pharmaceutical Adsorption onto GO-Fe3O4
-
Magnetic Analysis of MgFe Hydrotalcites as Powder and Dispersed in Thin Films within a Keratin Matrix
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 11.7 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Nanomaterials include: Nanomanufacturing and Applied Nano.
Impact Factor:
5.3 (2022);
5-Year Impact Factor:
5.4 (2022)
Latest Articles
Wide-Angle Optical Metasurface for Vortex Beam Generation
Nanomaterials 2023, 13(19), 2680; https://doi.org/10.3390/nano13192680 (registering DOI) - 29 Sep 2023
Abstract
In this work, we have achieved an advancement by integrating wide-angle capacity into vortex beams with an impressive topological charge (TC) of 12. This accomplishment was realized through the meticulous engineering of a propagation-designed metasurface. Comprising gallium nitride (GaN), meta-structures characterized by their
[...] Read more.
In this work, we have achieved an advancement by integrating wide-angle capacity into vortex beams with an impressive topological charge (TC) of 12. This accomplishment was realized through the meticulous engineering of a propagation-designed metasurface. Comprising gallium nitride (GaN), meta-structures characterized by their high-aspect ratio, this metasurface exhibits an average co-polarization transmission efficiency, reaching a remarkable simulated value of up to 97%. The intricate spiral patterns, along with their respective quantification, have been meticulously investigated through tilt-view scanning electron microscopy (SEM) and were further analyzed through the Mach–Zehnder interferometer. A captivating revelation emerged, a distinctive petal-like interference pattern manifests prior to the metasurface’s designed focal distance. The occurrence of this petal-like pattern at a specific z-axis position prompts a deliberate manipulation of the helicity of the spiral branches. This strategic helicity alteration is intrinsically tied to the achievement of a minimized donut diameter at the designed focal length. In regard to the angular capability of the device, the captured images continuously showcase prominent attributes within incident angles spanning up to 30 degrees. However, as incident angles surpass the 30-degree threshold, the measured values diverge from their corresponding theoretical projections, resulting in a progressive reduction in the completeness of the donut-shaped structure.
Full article
Open AccessArticle
Three-Dimensional-Printed Vortex Tube Reactor for Continuous Flow Synthesis of Polyglycolic Acid Nanoparticles with High Productivity
by
, , , and
Nanomaterials 2023, 13(19), 2679; https://doi.org/10.3390/nano13192679 (registering DOI) - 29 Sep 2023
Abstract
Polyglycolic acid (PGA) nanoparticles show promise in biomedical applications due to their exceptional biocompatibility and biodegradability. These nanoparticles can be readily modified, facilitating targeted drug delivery and promoting specific interactions with diseased tissues or cells, including imaging agents and theranostic approaches. Their potential
[...] Read more.
Polyglycolic acid (PGA) nanoparticles show promise in biomedical applications due to their exceptional biocompatibility and biodegradability. These nanoparticles can be readily modified, facilitating targeted drug delivery and promoting specific interactions with diseased tissues or cells, including imaging agents and theranostic approaches. Their potential to advance precision medicine and personalized treatments is evident. However, conventional methods such as emulsification solvent evaporation via batch synthesis or tubular reactors via flow chemistry have limitations in terms of nanoparticle properties, productivity, and scalability. To overcome these limitations, this study focuses on the design and development of a 3D-printed vortex tube reactor for the continuous synthesis of PGA nanoparticles using flow chemistry. Computer-aided design (CAD) and the design of experiments (DoE) optimize the reactor design, and computational fluid dynamics simulations (CFD) evaluate the mixing index (MI) and Reynolds (Re) expression. The optimized reactor design was fabricated using fused deposition modeling (FDM) with polypropylene (PP) as the polymer. Dispersion experiments validate the optimization process and investigate the impact of input flow parameters. PGA nanoparticles were synthesized and characterized for size and polydispersity index (PDI). The results demonstrate the feasibility of using a 3D-printed vortex tube reactor for the continuous synthesis of PGA nanoparticles through flow chemistry and highlight the importance of reactor design in nanoparticle production. The CFD results of the optimized reactor design showed homogeneous mixing across a wide range of flow rates with increasing Reynolds expression. The residence time distribution (RTD) results confirmed that increasing the flow rate in the 3D-printed vortex tube reactor system reduced the dispersion variance in the tracer. Both experiments demonstrated improved mixing efficiency and productivity compared to traditional tubular reactors. The study also revealed that the total flow rate had a significant impact on the size and polydispersity index of the formulated PGA nanoparticle, with the optimal total flow rate at 104.46 mL/min, leading to smaller nanoparticles and a lower polydispersity index. Additionally, increasing the aqueous-to-organic volumetric ratio had a significant effect on the reduced particle size of the PGA nanoparticles. Overall, this study provides insights into the use of 3D-printed vortex tube reactors for the continuous synthesis of PGA nanoparticles and underscores the importance of reactor design and flow parameters in PGA nanoparticle formulation.
Full article
(This article belongs to the Special Issue Synthesis and Design of Polymer Nanocarriers for Bioactive Compounds, Nutraceutical and Drug Delivery Systems)
Open AccessFeature PaperArticle
Supported MOCVD TiO2 Thin Films Grown on Modified Stainless Steel Mesh for Sensing Applications
by
, , , , , , and
Nanomaterials 2023, 13(19), 2678; https://doi.org/10.3390/nano13192678 (registering DOI) - 29 Sep 2023
Abstract
Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO2) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO2-based
[...] Read more.
Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO2) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO2-based chemical oxygen demand (COD) sensors exploit the photocatalytic properties of TiO2 in inducing the oxidation of organic compounds to CO2. In this work, we discuss nanostructured TiO2 thin films grown via low-pressure metal organic chemical vapor deposition (MOCVD) on metallic AISI 316 mesh. To increase the surface sensing area, different inorganic acid-based chemical etching protocols have been developed, determining the optimal experimental conditions for adequate substrate roughness. Both chemically etched pristine meshes and the MOCVD-coated ones have been studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) microanalysis, and X-ray photoelectron spectroscopy (XPS). We demonstrate that etching by HCl/H2SO4 at 55 °C provides the most suitable surface morphology. To investigate the behavior of the developed high surface area TiO2 thin films as COD sensors, photocatalytic degradation of functional model pollutants based on ISO 10678:2010 has been tested, showing for the best performing acid-etched mesh coated with polycrystalline TiO2 an increase of 60% in activity, and degrading 66 µmol of MB per square meter per hour.
Full article
(This article belongs to the Special Issue Functional Nanomaterials for Sensing Devices: Synthesis, Characterization and Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films
by
, , , , , and
Nanomaterials 2023, 13(19), 2677; https://doi.org/10.3390/nano13192677 (registering DOI) - 29 Sep 2023
Abstract
Zirconium-based metallic glass films are promising materials for nanoelectronic and biomedical applications, but their mechanical behavior under different conditions is not well understood. This study investigates the effects of radio frequency (RF) power and test temperature on the nanostructure, morphology, and creep behavior
[...] Read more.
Zirconium-based metallic glass films are promising materials for nanoelectronic and biomedical applications, but their mechanical behavior under different conditions is not well understood. This study investigates the effects of radio frequency (RF) power and test temperature on the nanostructure, morphology, and creep behavior of Zr55Cu30Al10Ni5 metallic glass films prepared by RF magnetron sputtering. The films were characterized by X-ray diffraction and microscopy, and their mechanical properties were measured by a bulge test system. The results show that the films were amorphous and exhibited a transition from noncolumnar to columnar morphology as the RF power increased from 75 W to 125 W. The columnar morphology reduced the creep resistance, Young’s modulus, residual stress, and hardness of the films. The creep behavior of the films was also influenced by the test temperature, with higher temperature leading to higher creep strain and lower creep stress. The findings of this study provide insights into the optimization of the sputtering parameters and the design of zirconium-based metallic glass films for various applications.
Full article
Open AccessArticle
Nitrogen-Doped Carbon Dots Encapsulated a Polyoxomolybdate-Based Coordination Polymer as a Sensitive Platform for Trace Tetracycline Determination in Water
Nanomaterials 2023, 13(19), 2676; https://doi.org/10.3390/nano13192676 - 29 Sep 2023
Abstract
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal–organic coordination polymers (MOCPs, (4-Hap)4(Mo8
[...] Read more.
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal–organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 μM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8–107 μM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.
Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Open AccessArticle
Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO2 Microdot Arrays
by
, , , , , and
Nanomaterials 2023, 13(19), 2675; https://doi.org/10.3390/nano13192675 - 29 Sep 2023
Abstract
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a
[...] Read more.
The exceptional property of plasmonic materials to localize light into sub-wavelength regimes has significant importance in various applications, especially in photovoltaics. In this study, we report the localized surface plasmon-enhanced perovskite solar cell (PSC) performance of plasmonic gold nanoparticles (AuNPs) embedded into a titanium oxide (TiO2) microdot array (MDA), which was deposited using the inkjet printing technique. The X-ray (XRD) analysis of MAPI (methyl ammonium lead iodide) perovskite films deposited on glass substrates with and without MDA revealed no destructive effect of MDA on the perovskite structure. Moreover, a 12% increase in the crystallite size of perovskite with MDA was registered. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) techniques revealed the morphology of the TiO2_MDA and TiO2-AuNPs_MDA. The finite-difference time-domain (FDTD) simulation was employed to evaluate the absorption cross-sections and local field enhancement of AuNPs in the TiO2 and TiO2/MAPI surrounding media. Reflectance UV-Vis spectra of the samples comprising glass/TiO2 ETL/TiO2_MDA (ETL—an electron transport layer) with and without AuNPs in TiO2_MDA were studied, and the band gap (Eg) values of MAPI have been calculated using the Kubelka–Munk equation. The MDA introduction did not influence the band gap value, which remained at ~1.6 eV for all the samples. The photovoltaic performance of the fabricated PSC with and without MDA and the corresponding key parameters of the solar cells have also been studied and discussed in detail. The findings indicated a significant power conversion efficiency improvement of over 47% in the PSCs with the introduction of the TiO2-AuNPs_MDA on the ETL/MAPI interface compared to the reference device. Our study demonstrates the significant enhancement achieved in halide PSC by utilizing AuNPs within a TiO2_MDA. This approach holds great promise for advancing the efficiency and performance of photovoltaic devices.
Full article
(This article belongs to the Special Issue Magnetic, Optical, and Electrical Transport Properties of Novel Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessEditorial
Advances and Applications of Carbon Nanotubes
Nanomaterials 2023, 13(19), 2674; https://doi.org/10.3390/nano13192674 - 29 Sep 2023
Abstract
Carbon nanotubes (CNT) (single-walled CNT, multiwalled CNT, non-covalently functionalized and covalently functionalized CNT, and/or CNT tailored with chemical or biological recognition elements) are by far the most popular nanomaterials thanks to their high electrical and thermal conductivities and mechanical strength, specific optical and
[...] Read more.
Carbon nanotubes (CNT) (single-walled CNT, multiwalled CNT, non-covalently functionalized and covalently functionalized CNT, and/or CNT tailored with chemical or biological recognition elements) are by far the most popular nanomaterials thanks to their high electrical and thermal conductivities and mechanical strength, specific optical and sorption properties, low cost, and easy preparation, among other interesting characteristics [...]
Full article
(This article belongs to the Topic Advances and Applications of Carbon Nanotubes)
Open AccessArticle
Enhanced Performance of GaAs Metal-Oxide-Semiconductor Capacitors Using a TaON/GeON Dual Interlayer
Nanomaterials 2023, 13(19), 2673; https://doi.org/10.3390/nano13192673 - 29 Sep 2023
Abstract
In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL or no
[...] Read more.
In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL or no IPL, the sample with the dual IPL of TaON/GeON exhibits the best performance: low interface-state density (1.31 × 1012 cm−2 eV−1), small gate leakage current density (1.62 × 10−5 A cm−2 at Vfb + 1 V) and large equivalent dielectric constant (18.0). These exceptional results can be attributed to the effective blocking action of the TaON/GeON dual IPL. It efficiently prevents the out-diffusion of Ga/As atoms and the in-diffusion of oxygen, thereby safeguarding the gate stack against degradation. Additionally, the insertion of the thin TaON layer successfully hinders the interdiffusion of Zr/Ge atoms, thus averting any reaction between Zr and Ge. Consequently, the occurrence of defects in the gate stack and at/near the GaAs surface is significantly reduced.
Full article
(This article belongs to the Topic Materials and Surface Treatment Processes Used for Engineering Applications)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Direct Evidence of Dynamic Metal Support Interactions in Co/TiO2 Catalysts by Near-Ambient Pressure X-ray Photoelectron Spectroscopy
by
, , , , , and
Nanomaterials 2023, 13(19), 2672; https://doi.org/10.3390/nano13192672 - 29 Sep 2023
Abstract
The interaction between metal particles and the oxide support, the so-called metal–support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure–performance relationship and eventually
[...] Read more.
The interaction between metal particles and the oxide support, the so-called metal–support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure–performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO2 (Co/TiO2) is an industrially relevant catalyst applied in Fischer−Tropsch synthesis. Although it is widely acknowledged that Co/TiO2 is restructured during the reaction process, little is known about the impact of the specific gas phase environment at the material’s surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate in situ Co particles supported on pure and NaBH4-modified TiO2 under H2, O2, and CO2:H2 gas atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for simultaneous probing of the chemical composition of surface and subsurface layers, is one of the study’s unique features. It is shown that under H2, cobalt particles are encapsulated below a stoichiometric TiO2 layer. This arrangement is preserved under CO2 hydrogenation conditions (i.e., CO2:H2), but changes rapidly upon exposure to O2. The pretreatment of the TiO2 support with NaBH4 affects the surface mobility and prevents TiO2 spillover onto Co particles.
Full article
(This article belongs to the Special Issue Transition Metal Complexes and Nanomaterials for Catalysis Application)
►▼
Show Figures

Figure 1
Open AccessEditorial
The Role of Nanofluids in Renewable Energy Engineering
Nanomaterials 2023, 13(19), 2671; https://doi.org/10.3390/nano13192671 - 29 Sep 2023
Abstract
The phenomenon of nanofluid flows is intrinsically characterized by several scales and intricate physical processes [...]
Full article
(This article belongs to the Special Issue The Role of Nanofluids in Renewable Energy Engineering)
Open AccessArticle
Numerical Investigation on the Effects of Grain Size and Grinding Depth on Nano-Grinding of Cadmium Telluride Using Molecular Dynamics Simulation
Nanomaterials 2023, 13(19), 2670; https://doi.org/10.3390/nano13192670 - 29 Sep 2023
Abstract
Cadmium telluride (CdTe) is known as an important semiconductor material with favorable physical properties. However, as a soft-brittle material, the fabrication of high-quality surfaces on CdTe is quite challenging. To improve the fundamental understanding of the nanoscale deformation mechanisms of CdTe, in this
[...] Read more.
Cadmium telluride (CdTe) is known as an important semiconductor material with favorable physical properties. However, as a soft-brittle material, the fabrication of high-quality surfaces on CdTe is quite challenging. To improve the fundamental understanding of the nanoscale deformation mechanisms of CdTe, in this paper, MD simulation was performed to explore the nano-grinding process of CdTe with consideration of the effects of grain size and grinding depth. The simulation results indicate that during nano-grinding, the dominant grinding mechanism could switch from elastic deformation to ploughing, and then cutting as the grinding depth increases. It was observed that the critical relative grain sharpness (RGS) for the transition from ploughing to cutting is greatly influenced by the grain size. Furthermore, as the grinding depth increases, the dominant subsurface damage mechanism could switch from surface friction into slip motion along the <110> directions. Meanwhile, as the grain size increases, less friction-induced damage is generated in the subsurface workpiece, and more dislocations are formed near the machined groove. Moreover, regardless of the grain size, it was observed that the generation of dislocation is more apparent as the dominant grinding mechanism becomes ploughing and cutting.
Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
►▼
Show Figures

Figure 1
Open AccessArticle
An Unprecedented CeO2/C Non-Noble Metal Electrocatalyst for Direct Ascorbic Acid Fuel Cells
Nanomaterials 2023, 13(19), 2669; https://doi.org/10.3390/nano13192669 - 28 Sep 2023
Abstract
Direct ascorbic acid fuel cells (DAAFCs) employ biocompatible ascorbic acid (AA) as fuel, allowing convenient storage, transportation, and fueling as well as avoiding fuel crossover. The AA oxidation reaction (AAOR) largely governs the performance of DAAFCs. However, AAOR electrocatalysts currently have low activity,
[...] Read more.
Direct ascorbic acid fuel cells (DAAFCs) employ biocompatible ascorbic acid (AA) as fuel, allowing convenient storage, transportation, and fueling as well as avoiding fuel crossover. The AA oxidation reaction (AAOR) largely governs the performance of DAAFCs. However, AAOR electrocatalysts currently have low activity, and state-of-the-art ones are limited to carbon black. Herein, we report the synthesis of an unprecedented AAOR electrocatalyst comprising 3.9 ± 1.1 nm CeO2 nanoparticles evenly distributed on carbon black simply by the wet chemical precipitation of Ce(OH)3 and a subsequent heat treatment. The resultant CeO2/C shows a remarkable AAOR activity with a peak current density of 13.1 mA cm−2, which is 1.7 times of that of carbon black (7.67 mA cm−2). According to X-ray photoelectron spectroscopy (XPS), the surface Ce3+ of CeO2 appears to contribute to the AAOR activity. Furthermore, our density functional theory (DFT) calculation reveals that that the proton of the hydroxyl group of AA can easily migrate to the bridging O sites of CeO2, resulting in a faster AAOR with respect to the pristine carbon, -COOH, and -C=O sites of carbon. After an i-t test, CeO2/C loses 17.8% of its initial current density, which is much superior to that of carbon black. CeO2 can capture the electrons generated by the AAOR to protect the -COOH and -C=O sites from being reduced. Finally, DAAFCs fabricated with CeO2/C exhibit a remarkable power density of 41.3 mW cm−2, which is the highest among proton-exchange-membrane-based DAAFCs in the literature.
Full article
(This article belongs to the Special Issue Nano-Composites for Photo- and Electrocatalysis and Its Application)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Ultrahigh Near-Infrared Perfect Absorption and Refractive Index Sensing Enabled by Split Ring Nanostructures
Nanomaterials 2023, 13(19), 2668; https://doi.org/10.3390/nano13192668 - 28 Sep 2023
Abstract
Plasmonic nanostructures as narrowband perfect absorbers have garnered significant attention due to their potential applications in biosensing and environment detection. This study emphasizes the investigation of arrayed split ring nanostructures within the configuration of metal-insulator-metal (MIM) multilayers, resulting in a maximum light absorption
[...] Read more.
Plasmonic nanostructures as narrowband perfect absorbers have garnered significant attention due to their potential applications in biosensing and environment detection. This study emphasizes the investigation of arrayed split ring nanostructures within the configuration of metal-insulator-metal (MIM) multilayers, resulting in a maximum light absorption of 99.94% in the near-infrared (NIR) spectral range. The exceptional absorption efficiency of the device is attributed to the strong resonance of electric and magnetic fields arising from the Fabry–Pérot cavity resonance. The resonant peak can be flexibly tuned by engineering the dielectric layer thickness, the period, and the geometric parameter of split rings. Remarkably, the device exhibits promising capabilities in sensing, demonstrating a sensitivity of 326 nm/RIU in visible wavelengths and 504 nm/RIU in NIR wavelengths when exposed to bio-analytes with varying refractive indices. This designed nanostructure can serve as a promising candidate for biosensors or environmental detection.
Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Fabrication of ZnO/ZnAl2O4/Au Nanoarrays through DC Electrodeposition Utilizing Nanoporous Anodic Alumina Membranes for Environmental Application
Nanomaterials 2023, 13(19), 2667; https://doi.org/10.3390/nano13192667 - 28 Sep 2023
Abstract
In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the
[...] Read more.
In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the electrodeposition current, time, barrier layer, and Au coating on the morphology of the resultant nanostructures were investigated using field emission scanning electron microscopy. Energy dispersive X-ray and X-ray diffraction were used to analyze the structural parameters and elemental composition of the ZnO/ZnAl2O4/Au nanoarray, and the Kirkendall effect was confirmed. The developed ZnO/ZnAl2O4/Au electrode was applied to remove organic dyes from aqueous solutions, including methylene blue (MB) and methyl orange (MO). Using a 3 cm2 ZnO/ZnAl2O4/Au sample, the 100% dye removal for 20 ppm MB and MO dyes at pH 7 and 25 °C was achieved after approximately 50 and 180 min, respectively. According to the kinetics analysis, the pseudo-second-order model controls the dye adsorption onto the sample surface. AAOM/Au and ZnO/ZnAl2O4/Au nanoarrays are also used as pH sensor electrodes. The sensing capability of AAOM/Au showed Nernstian behavior with a sensitivity of 65.1 mV/pH (R2 = 0.99) in a wide pH range of 2–9 and a detection limit of pH 12.6, whereas the ZnO/ZnAl2O4/Au electrode showed a slope of 40.1 ± 1.6 mV/pH (R2 = 0.996) in a pH range of 2–6. The electrode’s behavior was more consistent with non-Nernstian behavior over the whole pH range under investigation. The sensitivity equation was given by V(mV) = 482.6 + 372.6 e−0.2095 pH at 25 °C with R2 = 1.0, which could be explained in terms of changes in the surface charge during protonation and deprotonation.
Full article
(This article belongs to the Special Issue Engineered Nanomaterials for Environmental and Health Applications. Second Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine
Nanomaterials 2023, 13(19), 2666; https://doi.org/10.3390/nano13192666 - 28 Sep 2023
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many
[...] Read more.
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article’s main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Full article
Open AccessArticle
Probing the Nano-Assembly Leading to Periodic Gratings in Poly(p-dioxanone)
Nanomaterials 2023, 13(19), 2665; https://doi.org/10.3390/nano13192665 - 28 Sep 2023
Abstract
►▼
Show Figures
This study used scanning electron microscopy via 3D dissection coupled with synchrotron radiation with microfocal beams of both small-angle X-ray scattering and wide-angle X-ray diffraction to analyze the periodic crystal aggregates of unusual poly(p-dioxanone) (PPDO) dendritic cactus-arm-like ring bands upon crystallization with a
[...] Read more.
This study used scanning electron microscopy via 3D dissection coupled with synchrotron radiation with microfocal beams of both small-angle X-ray scattering and wide-angle X-ray diffraction to analyze the periodic crystal aggregates of unusual poly(p-dioxanone) (PPDO) dendritic cactus-arm-like ring bands upon crystallization with a diluent poly(vinyl alcohol) (PVA) that is capable of hydrogen bonding interactions with PPDO. Three-dimensional microscopy interior dissection clearly expounds that the banded periodic architectures are packed by alternately normal-oriented flat-on crystals underneath the valley, periodically interfaced/branched with horizontal-oriented edge-on fibrils underneath the ridge. The oblique angles between the valley’s flat-on crystals with the branches are ca. 25–45° (depending on gradient inclines and bending), which is also proved by the azimuthal angle in microbeam X-ray diffraction. The grating-like strut-rib assembly in the PPDO cactus-arm-like ring bands is further proved by novel iridescence tests.
Full article

Figure 1
Open AccessArticle
Fabrication and Characterization of a Poly(3,4-ethylenedioxythiophene)@Tungsten Trioxide–Graphene Oxide Hybrid Electrode Nanocomposite for Supercapacitor Applications
by
, , , , , , and
Nanomaterials 2023, 13(19), 2664; https://doi.org/10.3390/nano13192664 - 28 Sep 2023
Abstract
►▼
Show Figures
With the rapid development of nanotechnology, the study of nanocomposites as electrode materials has significantly enhanced the scope of research towards energy storage applications. Exploring electrode materials with superior electrochemical properties is still a challenge for high-performance supercapacitors. In the present research article,
[...] Read more.
With the rapid development of nanotechnology, the study of nanocomposites as electrode materials has significantly enhanced the scope of research towards energy storage applications. Exploring electrode materials with superior electrochemical properties is still a challenge for high-performance supercapacitors. In the present research article, we prepared a novel nanocomposite of tungsten trioxide nanoparticles grown over supported graphene oxide sheets and embedded with a poly(3,4-ethylenedioxythiophene) matrix to maximize its electrical double layer capacitance. The extensive characterization shows that the poly(3,4-ethylenedioxythiophene) matrix was homogeneously dispersed throughout the surface of the tungsten trioxide–graphene oxide. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide exhibits a higher specific capacitance of 478.3 F·g−1 at 10 mV·s−1 as compared to tungsten trioxide–graphene oxide (345.3 F·g−1). The retention capacity of 92.1% up to 5000 cycles at 0.1 A·g−1 shows that this ternary nanocomposite electrode also exhibits good cycling stability. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide energy density and power densities are observed to be 54.2 Wh·kg−1 and 971 W·kg−1. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide has been shown to be a superior anode material in supercapacitors because of the synergistic interaction of the poly(3,4-ethylenedioxythiophene) matrix and the tungsten trioxide–graphene oxide surface. These advantages reveal that the poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide electrode can be a promising electroactive material for supercapacitor applications.
Full article

Figure 1
Open AccessArticle
Fabrication of Hierarchical MOF-Derived NiCo2S4@Mo-Doped Co-LDH Arrays for High-Energy-Density Asymmetric Supercapacitors
Nanomaterials 2023, 13(19), 2663; https://doi.org/10.3390/nano13192663 - 28 Sep 2023
Abstract
The rational fabrication of composite structures made of mixed components has shown great potential for boosting the energy density of supercapacitors. Herein, an elaborate hierarchical MOF-derived NiCo2S4@Mo-doped Co-LDH arrays hybrid electrode was fabricated through a step-wise method. By leveraging
[...] Read more.
The rational fabrication of composite structures made of mixed components has shown great potential for boosting the energy density of supercapacitors. Herein, an elaborate hierarchical MOF-derived NiCo2S4@Mo-doped Co-LDH arrays hybrid electrode was fabricated through a step-wise method. By leveraging the synergistic effects of a uniform array of NiCo2S4 nanowires as the core and an MOF-derived porous shell, the NiCo2S4@Mo-doped Co-LDH hybrid electrode demonstrates an exceptional specific capacitance of 3049.3 F g−1 at 1 A g−1. Even at a higher current density of 20 A g−1, the capacitance remains high at 2458.8 F g−1. Moreover, the electrode exhibits remarkable cycling stability, with 91% of the initial capacitance maintained after 10,000 cycles at 10 A g−1. Additionally, the as-fabricated asymmetric supercapacitor (ASC) based on the NiCo2S4@Mo-doped Co-LDH electrode achieves an impressive energy density of 97.5 Wh kg−1 at a power density of 835.6 W kg−1. These findings provide a promising approach for the development of hybrid-structured electrodes, enabling the realization of high-energy-density asymmetric supercapacitors.
Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of the Optical Nonlinearity for Au Plasmonic Nanoparticles Based on Ion Implantation
Nanomaterials 2023, 13(19), 2662; https://doi.org/10.3390/nano13192662 - 28 Sep 2023
Abstract
The Au ion implantation process has emerged as an effective and simple method to be utilized for the fabrication of opto-electronic materials and devices due to numerous fascinating features of Au nanoparticles such as surface plasmon resonance (SPR), large third-order nonlinearity and a
[...] Read more.
The Au ion implantation process has emerged as an effective and simple method to be utilized for the fabrication of opto-electronic materials and devices due to numerous fascinating features of Au nanoparticles such as surface plasmon resonance (SPR), large third-order nonlinearity and a fast response time. In this paper, we describe the fabrication of a novel Au nanoparticle saturable absorber (Au NP-SA) by embedding the Au NPs into a SiO2 thin film using the ion implantation process, which shows excellent saturable absorption features due to the localized surface plasmon resonance (LSPR) effect of Au NPs. A stable and high-quality pulsed laser with a repetition rate of 33.3 kHz and a single pulse energy of 11.7 nJ was successfully constructed with the Au NP-SA. Both the stable operation characteristic of the obtained Q-switched pulsed laser and the high repeatability of the fabrication process of the Au NP-SA were demonstrated. In addition, the simple feasibility and maturity of the ion implantation process allow for the plasmonic nanoparticles to be easily integrated into other types of opto-electronic materials and devices to further improve their performance, and shows immense potential for the production of wafer-level products.
Full article
(This article belongs to the Special Issue Preparation and Characterization of Coatings with Special Properties)
►▼
Show Figures

Figure 1
Open AccessArticle
The Application of Microfibrous Entrapped Activated Carbon Composite Material for the Sarin Simulant Dimethyl Methylphosphonate Adsorption
Nanomaterials 2023, 13(19), 2661; https://doi.org/10.3390/nano13192661 - 28 Sep 2023
Abstract
►▼
Show Figures
Granular activated carbon (GAC) has proven to be an effective adsorbent for removing the chemical warfare agent sarin (GB) and simulants like Dimethyl methylphosphonate (DMMP). However, it comes with certain limitations, including inadequate contact efficiency, notable mass transfer resistance, and lower bed utilization
[...] Read more.
Granular activated carbon (GAC) has proven to be an effective adsorbent for removing the chemical warfare agent sarin (GB) and simulants like Dimethyl methylphosphonate (DMMP). However, it comes with certain limitations, including inadequate contact efficiency, notable mass transfer resistance, and lower bed utilization efficiency. This study synthesized steel fiber-entrapped activated carbon composites (SFEACs), which exhibited a maximum adsorption capacity of 285.3 mg/g at 303 K. Compared with the packed bed (PB) filled with GAC, while the adsorption capacity of SFEACS decreased, there was a substantial increase in the adsorption mass transfer rate. These SFEACs were combined with GAC to create a structural fixed bed (SFB), which demonstrated excellent performance in DMMP removal. Under identical experimental conditions, the DMMP breakthrough curve of SFB exhibited a steeper profile compared to the packed bed (PB) filled with GAC at the same bed height, and the breakthrough time against DMMP vapor could be extended by 13.8%. Furthermore, the adsorption rate constant of the Yoon-Nelson model increased by more than 17.6%, and the unused bed length, according to the Wheeler–Jonas model, decreased by more than 14%.
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
24 September 2023
Nanomaterials | Top 10 Selected Papers in 2022 in the Section “Theory and Simulation of Nanostructures”
Nanomaterials | Top 10 Selected Papers in 2022 in the Section “Theory and Simulation of Nanostructures”

18 September 2023
Nanomaterials | Top 10 Selected Papers in 2022 in the Section “2D and Carbon Nanomaterials”
Nanomaterials | Top 10 Selected Papers in 2022 in the Section “2D and Carbon Nanomaterials”

Topics
Topic in
Biomechanics, Biomedicines, Brain Sciences, Materials, Nanomaterials
Biomechanics and Biomaterial Engineering in Neurological Disorders
Topic Editors: Seifollah Gholampour, Mohammad Reza SafaeiDeadline: 30 September 2023
Topic in
Catalysts, Energies, Hydrogen, Molecules, Nanomaterials
Hydrogen Generation, Storage, and Utilization
Topic Editors: In-Hwan Lee, Duy Thanh Tran, Vandung DaoDeadline: 31 October 2023
Topic in
Condensed Matter, Liquids, Nanomaterials, Particles, Photonics, Quantum Reports
Quantum Droplets
Topic Editors: Boris Malomed, Chiara D’Errico, Enguo Chen, Grigori E. AstrakharchikDeadline: 15 November 2023
Topic in
Catalysts, Materials, Molecules, Nanomaterials, Photochem
New Materials and Advanced Applications in Photocatalysis
Topic Editors: Jose L. Hueso, Ewa Kowalska, Zhishun WeiDeadline: 30 November 2023

Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Nanomaterials
Nanomaterials in Foods: Food Additives, Delivery Systems, Detection, and Safety
Guest Editor: Soo-Jin ChoiDeadline: 1 October 2023
Special Issue in
Nanomaterials
Advanced Materials for Lithium (and Post-lithium) Batteries
Guest Editor: Thomas RütherDeadline: 20 October 2023
Special Issue in
Nanomaterials
Moving toward Biomimetic Tissue Engineered Scaffolds
Guest Editors: Costantino Del Gaudio, Silvia Baiguera, Lucy Di SilvioDeadline: 25 October 2023
Special Issue in
Nanomaterials
Hybrid Porous Nanomaterials for Energy and Environment
Guest Editor: Evangelos FavvasDeadline: 10 November 2023
Topical Collections
Topical Collection in
Nanomaterials
Applications of Magnetic Nanomaterials
Collection Editor: Yurii Gun'ko
Topical Collection in
Nanomaterials
Toxicity of Nanoparticles in the Lung: Environmental and Medical Aspects
Collection Editor: Eleonore Fröhlich
Topical Collection in
Nanomaterials
The Fourth State of Engineering: Nanoengineered Materials and Coatings Facilitated by Plasma Techniques
Collection Editors: Krasimir Vasilev, Kostya (Ken) Ostrikov, Thomas Michl, Akash Bachhuka
Topical Collection in
Nanomaterials
Metallic and Metal Oxide Nanohybrids and Their Applications
Collection Editor: Alexandru Grumezescu