-
Graphene-TLL-Cu2ONPs Hybrid as Highly Efficient Catalyst for Degradation of Organic Compounds
-
Piezo-Resistive Flexible Pressure Sensor by Blade-Coating Graphene–Silver Nanosheet–Polymer Nanocomposite
-
New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation
-
Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna
-
Bifunctional P-Containing RuO2 Catalysts Prepared from Surplus Ru Co-Ordination Complexes and Applied to Zn/Air Batteries
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journal: Nanomanufacturing
Impact Factor:
5.719 (2021);
5-Year Impact Factor:
5.810 (2021)
Latest Articles
Infrared Photodetection from 2D/3D van der Waals Heterostructures
Nanomaterials 2023, 13(7), 1169; https://doi.org/10.3390/nano13071169 (registering DOI) - 24 Mar 2023
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance
[...] Read more.
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Full article
(This article belongs to the Special Issue Advanced on Nanoscale Materials in Photoelectric Properties and Devices)
Open AccessArticle
Tunable Raman Gain in Transparent Nanostructured Glass-Ceramic Based on Ba2NaNb5O15
by
, , , , , , , and
Nanomaterials 2023, 13(7), 1168; https://doi.org/10.3390/nano13071168 (registering DOI) - 24 Mar 2023
Abstract
Stimulated Raman scattering in transparent glass-ceramics (TGCs) based on bulk nucleating phase Ba2NaNb5O15 were investigated with the aim to explore the influence of micro- and nanoscale structural transformations on Raman gain. Nanostructured TGCs were synthesized, starting with 8BaO·15Na
[...] Read more.
Stimulated Raman scattering in transparent glass-ceramics (TGCs) based on bulk nucleating phase Ba2NaNb5O15 were investigated with the aim to explore the influence of micro- and nanoscale structural transformations on Raman gain. Nanostructured TGCs were synthesized, starting with 8BaO·15Na2O·27Nb2O5·50SiO2 (BaNaNS) glass, by proper nucleation and crystallization heat treatments. TGCs are composed of nanocrystals that are 10–15 nm in size, uniformly distributed in the residual glass matrix, with a crystallinity degree ranging from 30 up to 50% for samples subjected to different heat treatments. A significant Raman gain improvement for both BaNaNS glass and TGCs with respect to SiO2 glass is demonstrated, which can be clearly related to the nanostructuring process. These findings show that the nonlinear optical functionalities of TGC materials can be modulated by controlling the structural transformations at the nanoscale rather than microscale.
Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Open AccessArticle
Sustainable Low-Cost Phosphorus Recovery Using Nanostructured Materials with Reusability Potential
by
, , , and
Nanomaterials 2023, 13(7), 1167; https://doi.org/10.3390/nano13071167 (registering DOI) - 24 Mar 2023
Abstract
A new low-cost material with a polymeric base formed from sodium silicate was developed. The material presents a nanostructured, highly rich iron surface with a large phosphorus retention capacity and potential reuse as a crop fertilizer. In the present study, we demonstrate that
[...] Read more.
A new low-cost material with a polymeric base formed from sodium silicate was developed. The material presents a nanostructured, highly rich iron surface with a large phosphorus retention capacity and potential reuse as a crop fertilizer. In the present study, we demonstrate that iron is the element that acts as an adsorbent for phosphate, while the polymeric base functions exclusively as a support for iron. The iron is uniformly adsorbed on the surface of the material, forming nanostructures, which ensure that iron works similarly to nanoparticles in solution but avoid other problems, such as particle agglomeration or the difficulty of separating them after the removal process. Materials were characterised by SEM, EDS, N2 sorption, and image processing, and the effect of pH, ionic strength, and temperature was studied. Sorption kinetics were analysed using Boyd’s diffusion model, and adsorption equilibria were studied using several adsorption models. A maximum iron adsorption on the polymeric base of 23.9 ± 0.3 mg Fe∙g−1 was found, while maximum phosphorus adsorption was 366 ± 21 mg P∙g−1 Fe. Thus, phosphorus is recovered from the aqueous medium with an inexpensive material that has the potential to be used directly as a fertilizer.
Full article
(This article belongs to the Topic Advances in Chemistry, XXVIth International Galician Portuguese Conference on Chemistry)
►▼
Show Figures

Figure 1
Open AccessReview
Encapsulated Peptides and Proteins with an Effect on Satiety
by
, , , and
Nanomaterials 2023, 13(7), 1166; https://doi.org/10.3390/nano13071166 (registering DOI) - 24 Mar 2023
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as
[...] Read more.
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Full article
(This article belongs to the Special Issue A Novel and Powerful Tool for Bioactive Substance Stabilization and Delivery: Nanocarriers, Nanomotors and Nanorobotics)
►▼
Show Figures

Figure 1
Open AccessArticle
A thorough Investigation of Rare-Earth Dy3+ Substituted Cobalt-Chromium Ferrite and Its Magnetoelectric Nanocomposite
by
, , , , , , , and
Nanomaterials 2023, 13(7), 1165; https://doi.org/10.3390/nano13071165 (registering DOI) - 24 Mar 2023
Abstract
The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5-xO4 where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied
[...] Read more.
The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5-xO4 where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied by the X-ray diffraction (XRD), infra-red spectroscopy (IR), scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. XRD analysis confirmed the cubic spinel structure of the prepared samples without the presence of any impurity and secondary phases. Selected area electron diffraction and IR measurements gives further confirmation to the XRD observations. Considering that strain mechanism, elastic properties and cation distribution play a major role for controlling the magnetic properties and therefore these properties were precisely evaluated through reliable methodologies such as XRD and IR data. The cation distribution was determined by the X-ray diffraction data which are further supported by the magnetization studies. Magnetoelectric properties of CoCr0.5DyxFe1.5−xO4 + BaTiO3 have also been investigated. The mechanisms involved are discussed in the manuscript.
Full article
(This article belongs to the Special Issue Perspectives in Magnetoelectric and Magnetic Nanomaterials)
Open AccessReview
Design Strategy and Application of Deep Eutectic Solvents for Green Synthesis of Nanomaterials
Nanomaterials 2023, 13(7), 1164; https://doi.org/10.3390/nano13071164 - 24 Mar 2023
Abstract
The first report of deep eutectic solvents (DESs) was released in 2003 and was identified as a new member of ionic liquid (IL), involving innovative chemical and physical characteristics. Using green solvent technology concerning economical, practical, and environmental aspects, DESs open the window
[...] Read more.
The first report of deep eutectic solvents (DESs) was released in 2003 and was identified as a new member of ionic liquid (IL), involving innovative chemical and physical characteristics. Using green solvent technology concerning economical, practical, and environmental aspects, DESs open the window for sustainable development of nanomaterial fabrication. The DESs assist in different fabrication processes and design nanostructures with specific morphology and properties by tunable reaction conditions. Using DESs in synthesis reactions can reduce the required high temperature and pressure conditions for decreasing energy consumption and the risk of environmental contamination. This review paper provides the recent applications and advances in the design strategy of DESs for the green synthesis of nanomaterials. The strategy and application of DESs in wet-chemical processes, nanosize reticular material fabrication, electrodeposition/electrochemical synthesis of nanostructures, electroless deposition, DESs based nano-catalytic and nanofluidic systems are discussed and highlighted in this review.
Full article
(This article belongs to the Special Issue Photoelectric Nanomaterials for Biochemical Sensing, Photon Detection, and Energy Conversion Applications)
Open AccessArticle
Model of Chronoamperometric Response towards Glucose Sensing by Arrays of Gold Nanostructures Obtained by Laser, Thermal and Wet Processes
by
, , , , and
Nanomaterials 2023, 13(7), 1163; https://doi.org/10.3390/nano13071163 - 24 Mar 2023
Abstract
Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as
[...] Read more.
Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as great sensitivity and little dependence on analyte diffusion close to the electrode–solution interface. Obtaining electrodes based on nanomaterials without using expensive lithographic techniques represents a great added value. In this paper, we modeled the chronoamperometric response towards glucose determination by four electrodes consisting of nanostructured gold onto graphene paper (GP). The nanostructures were obtained by electrochemical etch, thermal and laser processes of thin gold layer. We addressed experiments obtaining different size and shape of gold nanostructures. Electrodes have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and chronoamperometry. We modeled the current-time response at the potential corresponding to two-electrons oxidation process of glucose by the different nanostructured gold systems. The finest nanostructures of 10–200 nm were obtained by laser dewetting of 17 nm thin and 300 °C thermal dewetting of 8 nm thin gold layers, and they show that semi-infinite linear diffusion mechanism predominates over radial diffusion. Electrochemical etching and 17 nm thin gold layer dewetted at 400 °C consist of larger gold islands up to 1 μm. In the latter case, the current-time curves can be fitted by a two-phase exponential decay function that relies on the mixed second-order formation of adsorbed glucose intermediate followed by its first-order decay to gluconolactone.
Full article
(This article belongs to the Special Issue Laser-Matter Interaction for Nanostructuration and Characterization: From Fundamentals to Sensing and Energy Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation
Nanomaterials 2023, 13(7), 1162; https://doi.org/10.3390/nano13071162 - 24 Mar 2023
Abstract
Halloysite particles, with their unique multilayer nanostructure, are demonstrated here as highly efficient and readily available sorbent of heavy metals that can be easily scaled up and used in large-scale water remediation facilities. The various methods of raw material purification were applied, and
[...] Read more.
Halloysite particles, with their unique multilayer nanostructure, are demonstrated here as highly efficient and readily available sorbent of heavy metals that can be easily scaled up and used in large-scale water remediation facilities. The various methods of raw material purification were applied, and their effects were verified using techniques such as BET isotherm (determination of specific surface area and size of pores), XRF analysis (composition), and SEM imaging (determination of morphology). A series of adsorption experiments for aqueous solutions of metal ions (i.e., lead, cadmium) were carried out to quantify the sorption capacity of halloysite particles for selected heavy metals. The ability of adequately activated halloysite to efficiently remove heavy metal ions from water solutions was confirmed. The value of the zeta potential of raw and purified halloysite particles in water was determined. This enables us to understand its importance for the sorption of positively charged ions (metal, organics) at various pH values. The adsorption process conducted in the pH range of 6.0–6.5 showed significant improvement compared to the acidic conditions (pH value 3.0–3.5) and resulted in a high sorption capacity of lead ions—above 24.3 mg/g for the sulphuric acid-treated sample. The atomic scale ab initio calculations revealed a significant difference in adsorption energy between the external siloxane surface and cross-sectional interlayer surface, resulting in pronounced adsorption anisotropy. A low energy barrier was calculated for the interlayer migration of heavy metals into the halloysite interior, facilitating access to the active sites in these regions, thus significantly increasing the sorption capacity and kinetics. DFT (density functional theory) calculations supporting this study allowed for predicting the sorption potential of pure halloysite structure towards heavy metals. To confront it with experimental results, it was crucial to determine proper purification conditions to obtain such a developed structure from the mineral ore. The results show a massive increase in the BET area and confirm a high sorption potential of modified halloysite towards heavy metals.
Full article
(This article belongs to the Special Issue New Trends in Nanocomposite Materials for Water Treatment and Reuse)
►▼
Show Figures

Figure 1
Open AccessArticle
Sodium Alginate–Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal
Nanomaterials 2023, 13(7), 1161; https://doi.org/10.3390/nano13071161 - 24 Mar 2023
Abstract
A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were
[...] Read more.
A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA–DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g−1 at pH 7 and 649.9 mg g−1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA–DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption–desorption test. The SA–DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling.
Full article
(This article belongs to the Special Issue Advanced Functional Nanocomposites for Water Purification)
►▼
Show Figures

Figure 1
Open AccessArticle
ZnS–rGO/CNF Free-Standing Anodes for SIBs: Improved Electrochemical Performance at High C-Rate
by
, , , , , , and
Nanomaterials 2023, 13(7), 1160; https://doi.org/10.3390/nano13071160 - 24 Mar 2023
Abstract
ZnS–graphene composites (ZnSGO) were synthesized by a hydrothermal process and loaded onto carbon nanofibers (CNFs) by electrospinning (ZnS–GO/CNF), to obtain self-standing anodes for SIBs. The characterization techniques (XRPD, SEM, TEM, EDS, TGA, and Raman spectroscopy) confirm that the ZnS nanocrystals (10 nm) with
[...] Read more.
ZnS–graphene composites (ZnSGO) were synthesized by a hydrothermal process and loaded onto carbon nanofibers (CNFs) by electrospinning (ZnS–GO/CNF), to obtain self-standing anodes for SIBs. The characterization techniques (XRPD, SEM, TEM, EDS, TGA, and Raman spectroscopy) confirm that the ZnS nanocrystals (10 nm) with sphalerite structure covered by the graphene sheets were successfully synthesized. In the ZnS–GO/CNF anodes, the active material is homogeneously dispersed in the CNFs’ matrix and the ordered carbon source mainly resides in the graphene component. Two self-standing ZnS–GO/CNF anodes (active material amount: 11.3 and 24.9 wt%) were electrochemically tested and compared to a tape-casted ZnS–GO example prepared by conventional methods (active material amount: 70 wt%). The results demonstrate improved specific capacity at high C-rate for the free-standing anodes compared to the tape-casted example (69.93 and 92.59 mAh g−1 at 5 C for 11.3 and 24.9 wt% free-standing anodes, respectively, vs. 50 mAh g−1 for tape-casted). The 24.9 wt% ZnS–GO/CNF anode gives the best cycling performances: we obtained capacities of 255–400 mAh g−1 for 200 cycles and coulombic efficiencies ≥ 99% at 0.5 C, and of 80–90 mAh g−1 for additional 50 cycles at 5 C. The results suggest that self-standing electrodes with improved electrochemical performances at high C-rates can be prepared by a feasible and simple strategy: ex situ synthesis of the active material and addition to the carbon precursor for electrospinning.
Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials for Efficient Energy Conversion and Storage)
►▼
Show Figures

Figure 1
Open AccessArticle
Charge Injection and Energy Transfer of Surface-Engineered InP/ZnSe/ZnS Quantum Dots
Nanomaterials 2023, 13(7), 1159; https://doi.org/10.3390/nano13071159 - 24 Mar 2023
Abstract
Surface passivation is a critical aspect of preventing surface oxidation and improving the emission properties of nanocrystal quantum dots (QDs). Recent studies have demonstrated the critical role of surface ligands in determining the performance of QD-based light-emitting diodes (QD-LEDs). Herein, the underlying mechanism
[...] Read more.
Surface passivation is a critical aspect of preventing surface oxidation and improving the emission properties of nanocrystal quantum dots (QDs). Recent studies have demonstrated the critical role of surface ligands in determining the performance of QD-based light-emitting diodes (QD-LEDs). Herein, the underlying mechanism by which the capping ligands of InP/ZnSe/ZnS QDs influence the brightness and lifetime of the QD-LEDs is investigated. The electrochemical results demonstrate that highly luminescent InP/ZnSe/ZnS QDs exhibit modulated charge injection depending on the length of the surface ligand chains: short alkyl chains on the ligands are favorable for charge transport to the QDs. In addition, the correlation between the spectroscopic and XRD analyses suggests that the length of the ligand chain tunes the ligand–ligand coupling strength, thereby controlling the inter-QD energy transfer dynamics. The present findings shed new light on the crucial role of surface ligands for InP/ZnSe/ZnS QD-LED applications.
Full article
(This article belongs to the Topic Optical and Optoelectronic Properties of Materials and Their Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety
Nanomaterials 2023, 13(7), 1158; https://doi.org/10.3390/nano13071158 (registering DOI) - 24 Mar 2023
Abstract
Gas sensors have played a critical role in healthcare, atmospheric environmental monitoring, military applications and so on. In particular, flexible sensing devices are of great interest, benefitting from flexibility and wearability. However, developing flexible gas sensors with a high sensitivity, great stability and
[...] Read more.
Gas sensors have played a critical role in healthcare, atmospheric environmental monitoring, military applications and so on. In particular, flexible sensing devices are of great interest, benefitting from flexibility and wearability. However, developing flexible gas sensors with a high sensitivity, great stability and workability is still challenging. In this work, multi-walled carbon nanotubes (MWCNTs) were grown on polydimethylsiloxane (PDMS) films, which were further modified with polyaniline (PANI) using a simple chemical oxidation synthesis. The superior flexibility of the PANI-MWCNTs/PDMS film enabled a stable initial resistance value, even under bending conditions. The flexible sensor showed excellent NH3 sensing performances, including a high response (11.8 ± 0.2 for 40 ppm of NH3) and a low limit of detection (10 ppb) at room temperature. Moreover, the effect of a humid environment on the NH3 sensing performances was investigated. The results show that the response of the sensor is enhanced under high humidity conditions because water molecules can promote the adsorption of NH3 on the PANI-MWCNTs/PDMS films. In addition, the PANI-MWCNTs/PDMS film sensor had the abilities of detecting NH3 in the simulated breath of patients with kidney disease and the freshness of shrimp. These above results reveal the potential application of the PANI-MWCNTs/PDMS sensor for monitoring NH3 in human breath and food.
Full article
(This article belongs to the Special Issue Nanotechnology in Chemical Sensors and Biosensors)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Intense pH Sensitivity Modulation in Carbon Nanotube-Based Field-Effect Transistor by Non-Covalent Polyfluorene Functionalization
Nanomaterials 2023, 13(7), 1157; https://doi.org/10.3390/nano13071157 - 24 Mar 2023
Abstract
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate
[...] Read more.
We compare the pH sensing performance of non-functionalized carbon nanotubes (CNT) field-effect transistors (p-CNTFET) and CNTFET functionalized with a conjugated polyfluorene polymer (labeled FF-UR) bearing urea-based moieties (f-CNTFET). The devices are electrolyte-gated, PMMA-passivated, 5 µm-channel FETs with unsorted, inkjet-printed single-walled CNT. In phosphate (PBS) and borate (BBS) buffer solutions, the p-CNTFETs exhibit a p-type operation while f-CNTFETs exhibit p-type behavior in BBS and ambipolarity in PBS. The sensitivity to pH is evaluated by measuring the drain current at a gate and drain voltage of −0.8 V. In PBS, p-CNTFETs show a linear, reversible pH response between pH 3 and pH 9 with a sensitivity of 26 ± 2.2%/pH unit; while f-CNTFETs have a much stronger, reversible pH response (373%/pH unit), but only over the range of pH 7 to pH 9. In BBS, both p-CNTFET and f-CNTFET show a linear pH response between pH 5 and 9, with sensitivities of 56%/pH and 96%/pH, respectively. Analysis of the I–V curves as a function of pH suggests that the increased pH sensitivity of f-CNTFET is consistent with interactions of FF-UR with phosphate ions in PBS and boric acid in BBS, with the ratio and charge of the complexed species depending on pH. The complexation affects the efficiency of electrolyte gating and the surface charge around the CNT, both of which modify the I–V response of the CNTFET, leading to the observed current sensitivity as a function of pH. The performances of p-CNTFET in PBS are comparable to the best results in the literature, while the performances of the f-CNTFET far exceed the current state-of-the-art by a factor of four in BBS and more than 10 over a limited range of pH in BBS. This is the first time that a functionalization other than carboxylate moieties has significantly improved the state-of-the-art of pH sensing with CNTFET or CNT chemistors. On the other hand, this study also highlights the challenge of transferring this performance to a real water matrix, where many different species may compete for interactions with FF-UR.
Full article
(This article belongs to the Special Issue Nanostructures for Integrated Devices)
►▼
Show Figures

Figure 1
Open AccessArticle
Quasi-Freeform Metasurfaces for Wide-Angle Beam Deflecting and Splitting
by
, , , , , , and
Nanomaterials 2023, 13(7), 1156; https://doi.org/10.3390/nano13071156 - 24 Mar 2023
Abstract
Metasurfaces attracted extensive interests due to their outstanding ability to manipulate the wavefront at a subwavelength scale. In this study, we demonstrated quasi-freeform metasurfaces in which the radius, location, and height of the nanocylinder building blocks were set as optimized structure parameters, providing
[...] Read more.
Metasurfaces attracted extensive interests due to their outstanding ability to manipulate the wavefront at a subwavelength scale. In this study, we demonstrated quasi-freeform metasurfaces in which the radius, location, and height of the nanocylinder building blocks were set as optimized structure parameters, providing more degrees of freedom compared with traditional gradient metasurfaces. Given a desired wavefront shaping objective, these structure parameters can be collectively optimized utilizing a hybrid optimized algorithm. To demonstrate the versatility and feasibility of our method, we firstly proposed metasurfaces with deflecting efficiencies ranging from 86.2% to 94.8%, where the deflecting angles can vary in the range of 29°–75.6°. With further study, we applied our concept to realize a variety of high-efficiency, wide-angle, equal-power beam splitters. The total splitting efficiencies of all the proposed beam splitters exceeded 89.4%, where a highest efficiency of 97.6%, a maximum splitting angle of 75.6°, and a splitting uniformity of 0.33% were obtained. Considering that various deflecting angles, and various splitting channels with different splitting angles, can be realized by setting the optical response of metasurfaces as the optimization target, we believe that our method will provide an alternative approach for metasurfaces to realize desired wavefront shaping.
Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
►▼
Show Figures

Figure 1
Open AccessCommunication
CO2 Hydrogenation: Na Doping Promotes CO and Hydrocarbon Formation over Ru/m-ZrO2 at Elevated Pressures in Gas Phase Media
by
, , , , , , , and
Nanomaterials 2023, 13(7), 1155; https://doi.org/10.3390/nano13071155 - 24 Mar 2023
Abstract
Sodium-promoted monoclinic zirconia supported ruthenium catalysts were tested for CO2 hydrogenation at 20 bar and a H2:CO2 ratio of 3:1. Although increasing sodium promotion, from 2.5% to 5% by weight, slightly decreased CO2 conversion (14% to 10%), it
[...] Read more.
Sodium-promoted monoclinic zirconia supported ruthenium catalysts were tested for CO2 hydrogenation at 20 bar and a H2:CO2 ratio of 3:1. Although increasing sodium promotion, from 2.5% to 5% by weight, slightly decreased CO2 conversion (14% to 10%), it doubled the selectivity to both CO (~36% to ~71%) and chain growth products (~4% to ~8%) remarkably and reduced the methane selectivity by two-thirds (~60% to ~21%). For CO2 hydrogenation during in situ DRIFTS under atmospheric pressure, it was revealed that Na increases the catalyst basicity and suppresses the reactivity of Ru sites. Higher basicity facilitates CO2 adsorption, weakens the C–H bond of the formate intermediate promoting CO formation, and inhibits methanation occurring on ruthenium nanoparticle surfaces. The suppression of excessive hydrogenation increases the chain growth probability. Decelerated reduction during H2-TPR/TPR-MS and H2-TPR-EXAFS/XANES at the K-edge of ruthenium indicates that sodium is in contact with ruthenium. A comparison of the XANES spectra of unpromoted and Na-promoted catalysts after H2 reduction showed no evidence of a promoting effect involving electron charge transfer.
Full article
(This article belongs to the Special Issue Feature Papers in Nanomaterials Science)
►▼
Show Figures

Figure 1
Open AccessEditorial
Nanomaterials for Energy Harvesting
Nanomaterials 2023, 13(7), 1154; https://doi.org/10.3390/nano13071154 - 24 Mar 2023
Abstract
Energy harvesting is no longer simply an academic issue; it has grown into a problem with real industrial and even social significance [...]
Full article
(This article belongs to the Special Issue Nanomaterials for Energy Harvesting)
Open AccessEditorial
Editorial for Special Issue “Cancer Treatment via Nanotherapy”
by
Nanomaterials 2023, 13(7), 1153; https://doi.org/10.3390/nano13071153 - 24 Mar 2023
Abstract
Effective cancer treatment remains one of the greatest medical challenges [...]
Full article
(This article belongs to the Special Issue Cancer Treatment via Nanotherapy)
Open AccessArticle
Characterization of Large-Energy-Bandgap Methylammonium Lead Tribromide (MAPbBr3) Perovskite Solar Cells
by
and
Nanomaterials 2023, 13(7), 1152; https://doi.org/10.3390/nano13071152 - 24 Mar 2023
Abstract
We have investigated the effects of the methylammonium bromide (MABr) content of the precursor solution on the properties of wide-bandgap methylammonium lead tribromide (MAPbBr3) perovskite solar cells (PSCs). In addition, the anti-solvent process for fabricating MAPbBr3 perovskite thin films was
[...] Read more.
We have investigated the effects of the methylammonium bromide (MABr) content of the precursor solution on the properties of wide-bandgap methylammonium lead tribromide (MAPbBr3) perovskite solar cells (PSCs). In addition, the anti-solvent process for fabricating MAPbBr3 perovskite thin films was optimized. The MAPbBr3 precursor was prepared by dissolving MABr and lead bromide (PbBr2) in N,N-dimethylformamide and N,N-dimethyl sulfoxide. Chlorobenzene (CB) was used as the anti-solvent. We found that both the morphology of the MAPbBr3 layer and the PSCs performance are significantly affected by the MABr content in perovskite precursor solution and anti-solvent dripping time. The best-performing device was obtained when the molar ratio of MABr:PbBr2 was 1:1 and the CB drip time was 10 s. The best device exhibited a power conversion efficiency of 7.58%, short-circuit current density of 7.32 mA·cm−2, open-circuit voltage of 1.30 V, and fill factor of 79.87%.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Perovskite Solar Cells)
►▼
Show Figures

Figure 1
Open AccessArticle
Magnetic Nanocomposites for the Remote Activation of Sulfate Radicals for the Removal of Rhodamine B
Nanomaterials 2023, 13(7), 1151; https://doi.org/10.3390/nano13071151 - 23 Mar 2023
Abstract
The widespread presence of numerous organic contaminants in water poses a threat to the ecological environment and human health. Magnetic nanocomposites exposed to an alternating magnetic field (AMF) have a unique ability for magnetically mediated energy delivery (MagMED) resulting from the embedded magnetic
[...] Read more.
The widespread presence of numerous organic contaminants in water poses a threat to the ecological environment and human health. Magnetic nanocomposites exposed to an alternating magnetic field (AMF) have a unique ability for magnetically mediated energy delivery (MagMED) resulting from the embedded magnetic nanoparticles; this localized energy delivery and associated chemical and thermal effects are a potential method for removing contaminants from water. This work developed a novel magnetic nanocomposite—a polyacrylamide-based hydrogel loaded with iron oxide nanoparticles. For this magnetic nanocomposite, persulfate activation and the contamination removal in water were investigated. Magnetic nanocomposites were exposed to AMF with a model organic contaminant, rhodamine B (RhB) dye, with or without sodium persulfate (SPS). The removal of RhB by the nanocomposite without SPS as a sorbent was found to be proportional to the concentration of magnetic nanoparticles (MNPs) in the nanocomposite. With the addition of SPS, approximately 100% of RhB was removed within 20 min. This removal was attributed primarily to the activation of sulfate radicals, triggered by MNPs, and the localized heating resulted from the MNPs when exposed to AMF. This suggests that this magnetic nanocomposite and an AMF could be a unique environmental remediation technique for hazardous contaminants.
Full article
(This article belongs to the Special Issue Nanostructured Materials for Environmental Remediation)
►▼
Show Figures

Figure 1
Open AccessArticle
Designing an Innovative Electrospinning Strategy to Generate PHBV Nanofiber Scaffolds with a Radially Oriented Fibrous Pattern
Nanomaterials 2023, 13(7), 1150; https://doi.org/10.3390/nano13071150 - 23 Mar 2023
Abstract
Electrospinning has contributed substantially to the construction of nanofibrous scaffolds for potential tissue engineering and regenerative medicine applications. However, conventional electrospinning only has the ability to generate and collect nanofiber scaffolds with a randomly oriented fibrous pattern, which lack the necessary cell alignment
[...] Read more.
Electrospinning has contributed substantially to the construction of nanofibrous scaffolds for potential tissue engineering and regenerative medicine applications. However, conventional electrospinning only has the ability to generate and collect nanofiber scaffolds with a randomly oriented fibrous pattern, which lack the necessary cell alignment guidance function. In this study, a novel electrospinning fiber-collecting device was designed and developed by setting a series of small pin-ring-structured collectors on a large plain plate. Specifically, we demonstrated that the pin-ring-structured collectors, which were constructed by inserting a metal pin into the center of a metal ring, could collect the as-electrospun nanofibers with radially oriented structures in an innovative manner. We first investigated the suitable polymeric concentration for electrospinning poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and the optimum electrospinning concentration of PHBV was found to be 12% (w/v) PHBV dissolved in hexafluoroisopropyl alcohol (HFIP). Then, 12% (w/v) PHBV solution was electrospun into radially oriented nanofiber scaffolds using our novel electrospinning strategy, and their various performances were further compared with conventionally randomly oriented nanofiber scaffolds that were also produced from 12% (w/v) PHBV solution. The results showed that the radially oriented PHBV nanofiber scaffolds exhibited obviously enhanced mechanical properties and decreased hydrophobicity compared with the randomly oriented PHBV nanofiber scaffold controls. Importantly, the biological properties of radially oriented PHBV nanofiber scaffolds were also demonstrated to be enhanced, compared with randomly oriented PHBV nanofiber scaffolds, by effectively inducing cell alignment and significantly promoting cell proliferation. In sum, the present study indicates that our as-prepared nanofiber scaffolds with a radially oriented pattern are of great interest for advanced applications, such as wound dressings and tissue-engineered scaffolds.
Full article
(This article belongs to the Special Issue Biohybrid Nanofibers and Nanomaterial-Contained Fibers: Fabrication and Application)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Polymers, Nanomaterials, Molecules, Chemistry
Conjugated Polymers: Preparation, Properties and Applications
Topic Editors: Carmine Coluccini, Paolo CoghiDeadline: 31 March 2023
Topic in
Applied Sciences, Biosensors, Materials, Nanomaterials, Sensors
Advanced Nanomaterials for Sensing Applications
Topic Editors: Ki-Hyun Kim, Deepak KukkarDeadline: 30 April 2023
Topic in
J. Compos. Sci., JFB, Materials, Nanomaterials, Polymers
Supramolecular and Functional Nanomaterials for Theranostic, Catalysis, and Sensor Applications
Topic Editors: Ken Cham-Fai Leung, Xunjin Zhu, Matthew Y. Lui, Nghia P. TruongDeadline: 20 May 2023
Topic in
Crystals, Liquids, Materials, Molecules, Nanomaterials
Recent Advances in Liquid Crystals
Topic Editors: Jiatong Sun, Xiaoqian WangDeadline: 31 May 2023

Conferences
Special Issues
Special Issue in
Nanomaterials
Antibacterial Nanostructured Coatings
Guest Editor: Loredana TammaroDeadline: 25 March 2023
Special Issue in
Nanomaterials
Advanced Materials for Bio-Related Applications
Guest Editors: Rafał Jakub Wiglusz, Anna LukowiakDeadline: 31 March 2023
Special Issue in
Nanomaterials
Prospects of Bioinspired and Biomimetic Materials
Guest Editors: Touseef Amna, M. Shamshi HassanDeadline: 10 April 2023
Special Issue in
Nanomaterials
Pulsed Laser Deposited Nanostructures
Guest Editor: Cătălin-Daniel ConstantinescuDeadline: 30 April 2023
Topical Collections
Topical Collection in
Nanomaterials
Process Intensification, Process Design and Green Techniques for Nanomaterials Production and Applications
Collection Editors: Marco Stoller, Giorgio Vilardi
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: New Trends in Inorganic Nanoparticles and Composites from Preparation to Applications
Collection Editors: Félix Zamora, Edward H. Lester
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: Synthesis and Applications of Nanomaterials for Renewable Energies
Collection Editors: Efrat Lifshitz, David Marrero-López
Topical Collection in
Nanomaterials
Magnetic Nanostructured Materials: Synthesis, Characterization and Their Cutting-Edge Applications
Collection Editors: Vasileios Tzitzios, Georgia Basina