Special Issue

Nanoscale Self-Assembly: Nanopatterning and Metrology

Message from the Guest Editor

The self-assembly process underlies a plethora of natural phenomena from the macro to the nano scale. In lithography, the use of self-assembling materials is considered an extremely promising patterning option to overcome the size scale limitations imposed by the conventional photolithographic methods. Although considerable progress has been made so far in the control of self-assembly processes applied to nanolithography, a number of unresolved problems related to the reproducibility and metrology of the selfassembled features are still open. The aim of the present Special Issue is to gather original research papers and comprehensive reviews covering various aspects of the self-assembly processes applied to nanopatterning. Topics include but are not limited to the following: Theory, simulation, and synthesis of selfassembling materials: Development of novel selfassembly methods; The realization of nanometric structures and devices; Improvement of long-range order (directed self-assembly, dewetting, coassembly, and hierarchical assembly); Metrology issues related to the nanoscale characterization of self-assembed structures.

Guest Editor

Dr. Federico Ferrarese Lupi Istituto Nazionale di Ricerca Metrologica, Torino, Italy

Deadline for manuscript submissions

closed (15 July 2021)

Nanomaterials

an Open Access Journal by MDPI

Impact Factor 4.3 CiteScore 9.2 Indexed in PubMed

mdpi.com/si/23256

Nanomaterials
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
nanomaterials@mdpi.com

mdpi.com/journal/ nanomaterials

Nanomaterials

an Open Access Journal by MDPI

Impact Factor 4.3 CiteScore 9.2 Indexed in PubMed

About the Journal

Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometerscale dimensions, which we call "nanomaterials". These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal-organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access. We are proud of our increasing impact factor and ability to provide rapid decisions to authors.

Editor-in-Chief

Prof. Dr. Eugenia Valsami-Jones

School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT, UK

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.

Journal Rank:

JCR - Q2 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)

