Nanocellulose and Nanochitin: Characterization and Applications

Message from the Guest Editor

Dear Colleagues,

Nanocellulose and nanochitin have generated a great deal of interest as reinforcement and functional nanomaterials because of their renewability, biocompatibility, high specific surface area, low density and good mechanical properties. Nanocellulose and nanochitin can be isolated from biomass using a top down approach and there is an ongoing effort to produce these nanomaterials economically and efficiently. We invite authors to contribute original research articles or comprehensive reviews covering the most recent progress and new developments in the isolation, characterisation and utilization of nanocellulose and nanochitin in various composite and functional materials. Potential topics include, but are not limited to:

1. Nanocellulose/nanochitin isolation from biomass and residues
2. Processing strategies for materials from nanocellulose and nanochitin
3. Nanocellulose and nanochitin for functional applications
4. Novel characterization techniques to understand nanocellulose/nanochitin based materials

Prof. Aji P. Mathew
Guest Editor
Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call “nanomaterials”. These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus, Chemical Abstracts, Inspec and Polymer Library. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 4.21, which equals rank 66/439 (Q1) in 'General Materials Science' and rank 29/272 (Q1) in 'General Chemical Engineering'.