Electrochemically Engineering of Nanoporous Materials

Guest Editor:

Dr. Abel Santos
abel.santos@adelaide.edu.au

Deadline for manuscript submissions: closed (31 March 2018

Message from the Guest Editor

Electrochemical engineering of nanoporous materials is a cost-effective and facile synthesis approach that enables the production of a range of nanoscale materials with controllable dimensions and properties. Recent decades have witnessed extensive research activity into the advanced engineering of nanoporous materials, from fundamental studies to applied science. These nanomaterials offer a set of unique and exclusive advantages for a wealth of applications, including catalysis, energy storage and harvesting, electronics, photonics, sensing, templates, and membranes.

This Special Issue is dedicated to recent research advances in electrochemical engineering of nanoporous materials and their application across several disciplines and research fields. The broad and interdisciplinary applicability of these nanomaterials will be of profound and immediate interest for a broad audience, ranging from physicists, chemists, engineers, materials scientists, bioengineers, and nanomedicine experts.

mdpi.com/si/10183
Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call “nanomaterials”. These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus, Chemical Abstracts, Inspec and Polymer Library. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 4.21, which equals rank 66/439 (Q1) in 'General Materials Science' and rank 29/272 (Q1) in 'General Chemical Engineering'.