Boron Nitride Nanostructures

Guest Editors:

Prof. Dr. Philippe Miele
Institut Europeen des Membranes UMR5635, Montpellier, France
philippe.miele@iemm.univ-montp2.fr

Dr. Mikhael Bechelany
Institut Européen des Membranes (IEMM, EN SCM UM CNRS UMR5635), Montpellier, France
mikhael.bechelany@umontpellier.fr

Deadline for manuscript submissions: **closed (10 September 2018)**

Message from the Guest Editors

Dear Colleagues,

Boron nitride (BN) is a III–V material, well known for its outstanding physico-chemical properties, such high chemical and thermal stabilities and unique electronic and optical properties. In the past few decades, Boron Nitride nanostructures, such as nanosheets, nanotubes, porous material, nanocapsules, etc., have attracted a great deal of interest because of their potential applications in functional devices.

The research topic of this Special Issue will consider: (i) the design of nanostructured boron nitride nanostructures with controlled crystal structure, porosity and dimensionality, (ii) functionalization of boron nitride, and (iii) prospective applications of boron nitride nanostructures and materials.

Multi-disciplinary studies, as well as strategies dealing with the conversion of precursors into functional nanostructured boron nitride, will be particularly welcome.

Please [click here to submit your manuscript](#).

Prof. Dr. Philippe Miele
Prof. Dr. Mikhael Bechelany
Guest Editors
Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call “nanomaterials”. These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, *Nanomaterials*, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus, Chemical Abstracts, Inspec and Polymer Library. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): **4.21**, which equals rank 66/439 (Q1) in 'General Materials Science' and rank 29/272 (Q1) in 'General Chemical Engineering'.

Contact Us

Nanomaterials

MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/nanomaterials
nanomaterials@mdpi.com
@nano_mdpi