Bor on Nit r ide Nanostructures

Guest Editors:

Prof. Dr. Philippe Miele
Institut Europeen des Membranes UMR5635, Montpellier, France
philippe.miele@iemm.univ-montp2.fr

Dr. Mikhael Bechelany
Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635), Montpellier, France
mikhael.bechelany@umontpellier.fr

Deadline for manuscript submissions: closed (10 September 2018)

Message from the Guest Editors

Dear Colleagues,

Boron nitride (BN) is a III−V material, well known for its outstanding physico-chemical properties, such high chemical and thermal stabilities and unique electronic and optical properties. In the past few decades, Boron Nitride nanostructures, such as nanosheets, nanotubes, porous material, nanocapsules, etc., have attracted a great deal of interest because of their potential applications in functional devices.

The research topic of this Special Issue will consider: (i) the design of nanostructured boron nitride nanostructures with controlled crystal structure, porosity and dimensionality, (ii) functionalization of boron nitride, and (iii) prospective applications of boron nitride nanostructures and materials.

Multi-disciplinary studies, as well as strategies dealing with the conversion of precursors into functional nanostructured boron nitride, will be particularly welcome.

Please click here to submit your manuscript.

Prof. Dr. Philippe Miele
Prof. Dr. Mikhael Bechelany
Guest Editors

mdpi.com/si/11868
Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call “nanomaterials”. These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus, Chemical Abstracts, Inspec and Polymer Library. Citations available in PubMed, full-text archived in PubMed Central

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 12.5 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the second half of 2018).

Contact Us

Nanomaterials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/nanomaterials
nanomaterials@mdpi.com

Editor-in-Chief

Prof. Dr. Shirley Chiang
Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616-5270, USA