Advanced Nanomaterials for Electrochemical Biosensors

Guest Editors:

Prof. Dr. Ren-Jei Chung
Department of Chemical Engineering and Biotechnology, National Taiwan University of Technology (Taipei Tech), Taipei 10608, Taiwan
rijkung@mail.ntut.edu.tw

Prof. Dr. Jr-Hau He
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
jrhauhe@cityu.edu.hk

Prof. Dr. Rajalakshmi Sakhivel
Department of Chemical Engineering and Biotechnology, National Taiwan University of Technology (Taipei Tech), Taipei 10608, Taiwan
rajalakshmicnr@gmail.com

Message from the Guest Editors

Nanomaterials have been an emerging interest and are extensively analyzed with respect to enhancing biosensing performances due to their characteristics of being small in size and having quantum effects, along with surface and interface effects that notably increase essential activity indexes of biosensing applications. Nanomaterials that modified conventional electrodes label the size mismatch between biological elements and an electronic transducer, which may suggestively improve sensitivity and biocompatibility. Moreover, detection signals have demonstrated that the sensing performance of a biosensor mainly depends on its intrinsic characteristics, such as physicochemical properties, composition, crystal phases, and morphologies of the catalytic materials. For example, catalytic materials possess huge surface areas, excellent electrical conductivity, and biocompatibility, which are used as signal amplification elements in electrochemical biosensors. Thus, the investigation of a new kind of advanced catalytic nanomaterial is key for fabricating biosensors with superior performances and providing low detection limits.

Deadline for manuscript submissions:
24 November 2022

Special Issue

Editor-in-Chief

Prof. Dr. Shirley Chiang
Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
shirley@physics.ucdavis.edu

Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the nanomaterials that enable these applications. This Special Issue aims to capture the latest advancements in nanomaterials for electrochemical biosensors.
At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call "nanomaterials". These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAplus / SciFinder, Inspec, and other databases.

Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)

Contact Us

Nanomaterials
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
www.mdpi.com

mdpi.com/journal/nanomaterials
nanomaterials@mdpi.com
@nano_mdpi