Synthesis, Characterization and Applications of Nanoporous Functional Materials

Guest Editors:

Prof. Dr. Yusuke Yamauchi
Professor / School of Chem Eng
Senior Group Leader/ Australian Institute for Bioengineering and
Nanotechnology (AIBN), The University of Queensland, Australia
y.yamauchi@uq.edu.au

Dr. Jeonghun Kim
School of Chemical Engineering and Australian Institute for
Bioengineering and Nanotechnology (AIBN), The University of Queensland, Australia
jeonghun.kim@uq.edu.au

Prof. Jungmok You
Department of Plant & Environmental New Resources,
College of Life Sciences, Graduate School of
Biotechnology, Kyung Hee University, South Korea
jmyou@khu.ac.kr

Message from the Guest Editors

Nanoporous materials have attracted considerable attention for various applications, such as catalysts, energy storages, sensors, bioapplications, environmentally-related application, etc., due to the high surface area, functions, easy hybridization ability with other materials. In general, the nanoporous structure can be made by bottom-up or top-down approaches through the integration of fields of material science, chemistry, nanotechnology, etc. Recently, nanoporous structures are being applied to polymers, metals, metal oxides, and carbons to improve their properties in applications. Therefore, synthesis and characterization of nanoporous materials are very important. This Special Issue explores scientific advances of nanoporous functional materials in diverse applications and includes research articles focusing on experimental studies, as well prospective discussing practical applications.

Deadline for manuscript submissions: April 2019

mdpi.com/si/15566
Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometer-scale dimensions, which we call "nanomaterials". These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal–organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Scopus, Chemical Abstracts, Inspec and Polymer Library. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 4.21, which equals rank 66/439 (Q1) in 'General Materials Science' and rank 29/272 (Q1) in 'General Chemical Engineering'.