Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, Embase, CaPlus / SciFinder, AGRIS, and many other databases.
- Journal Rank: JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 14.2 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 26 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journals for Molecules include: Foundations and Photochem.
Impact Factor:
4.927 (2021)
;
5-Year Impact Factor:
5.110 (2021)
Latest Articles
Influence of Harvest Time on the Chemical Profile of Pereskia aculeate Mill. Using Paper Spray Mass Spectrometry
Molecules 2022, 27(13), 4276; https://doi.org/10.3390/molecules27134276 (registering DOI) - 02 Jul 2022
Abstract
This study evaluated the physicochemical characteristics and the production of bioactive compounds of Pereskia aculeata Mill. at different harvest times. Here, we performed a qualitative evaluation of the chemical profile by paper spray mass spectrometry (PSMS), the phenolic acid and flavonoid profile by
[...] Read more.
This study evaluated the physicochemical characteristics and the production of bioactive compounds of Pereskia aculeata Mill. at different harvest times. Here, we performed a qualitative evaluation of the chemical profile by paper spray mass spectrometry (PSMS), the phenolic acid and flavonoid profile by high-performance liquid chromatography (HPLC), antioxidant activity, total carotenoids, total phenolic compounds, total flavonoids, total anthocyanins, color characteristics, total soluble solids (TSS), total solids (TS), pH, and total titratable acidity (TTA). The chemical profile was not affected, with the exception of 4,5-dimethyl-2,6-octadiene and azelaic acid, which was only identified in the leaves harvested during the winter. The content of four phenolic acids and three flavonoids were analyzed; out of these, no significant amounts of ellagic acid and quercetin were detected. There was no difference in production of bioactive compounds between seasons, reflecting the antioxidant activity, which also did not differ. Brightness, chroma, and leaf pH were the only physicochemical characteristics that did not vary between seasons.
Full article
Open AccessReview
Progress and Prospects of Non-Canonical NF-κB Signaling Pathway in the Regulation of Liver Diseases
Molecules 2022, 27(13), 4275; https://doi.org/10.3390/molecules27134275 (registering DOI) - 02 Jul 2022
Abstract
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver
[...] Read more.
Non-canonical nuclear factor kappa B (NF-κB) signaling pathway regulates many physiological and pathological processes, including liver homeostasis and diseases. Recent studies demonstrate that non-canonical NF-κB signaling pathway plays an essential role in hyperglycemia, non-alcoholic fatty liver disease, alcoholic liver disease, liver regeneration, liver injury, autoimmune liver disease, viral hepatitis, and hepatocellular carcinoma. Small-molecule inhibitors targeting to non-canonical NF-κB signaling pathway have been developed and shown promising results in the treatment of liver injuries. Here, the recent advances and future prospects in understanding the roles of the non-canonical NF-κB signaling pathways in the regulation of liver diseases are discussed.
Full article
(This article belongs to the Special Issue Novel Therapeutic Targets and Potential Drugs for Inflammatory Disease)
Open AccessArticle
Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis
by
, , , , , , and
Molecules 2022, 27(13), 4274; https://doi.org/10.3390/molecules27134274 (registering DOI) - 02 Jul 2022
Abstract
In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed
[...] Read more.
In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV–Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L–1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L–1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L–1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L–1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L–1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.
Full article
(This article belongs to the Special Issue Synthesis, Bioactivity Evaluation and Application of Plant-Based Nanoparticles)
Open AccessArticle
Natural Formulations Based on Olea europaea L. Fruit Extract for the Topical Treatment of HSV-1 Infections
by
, , , , , and
Molecules 2022, 27(13), 4273; https://doi.org/10.3390/molecules27134273 (registering DOI) - 02 Jul 2022
Abstract
In the present study, a hydroxytyrosol-rich Olea europaea L. fruit extract (OFE) was added to three thoroughly green formulations—hydrogel, oleogel, and cream—in order to evaluate their antiviral activity against HSV-1. The extract was characterized by different analytical techniques, i.e., FT-IR, XPS, and TGA.
[...] Read more.
In the present study, a hydroxytyrosol-rich Olea europaea L. fruit extract (OFE) was added to three thoroughly green formulations—hydrogel, oleogel, and cream—in order to evaluate their antiviral activity against HSV-1. The extract was characterized by different analytical techniques, i.e., FT-IR, XPS, and TGA. HPLC analyses were carried out to monitor the content and release of hydroxytyrosol in the prepared formulations. The total polyphenol content and antioxidant activity were investigated through Folin–Ciocâlteu’s reagent, DPPH, and ABTS assays. The ability of the three formulations to convey active principles to the skin was evaluated using a Franz cell, showing that the number of permeated polyphenols in the hydrogel (272.1 ± 1.8 GAE/g) was significantly higher than those in the oleogel and cream (174 ± 10 and 179.6 ± 2 GAE/g, respectively), even if a negligible amount of hydroxytyrosol crossed the membrane for all the formulations. The cell viability assay indicated that the OFE and the three formulations were not toxic to cultured Vero cells. The antiviral activity tests highlighted that the OFE had a strong inhibitory effect against HSV-1 with a 50% inhibitory concentration (IC50) at 25 µg/mL, interfering directly with the viral particles. Among the three formulations, the hydrogel exhibited the highest antiviral activity also against the acyclovir-resistant strain.
Full article
(This article belongs to the Special Issue New Trends in Skin Care: Topical Delivery of Cosmeceutical Molecules)
►▼
Show Figures

Figure 1
Open AccessReview
Origanum syriacum Phytochemistry and Pharmacological Properties: A Comprehensive Review
Molecules 2022, 27(13), 4272; https://doi.org/10.3390/molecules27134272 (registering DOI) - 02 Jul 2022
Abstract
Herbal medicine has been gaining special interest as an alternative choice of treatment for several diseases, being generally accessible, cost-effective and safe, with fewer side-effects compared to chemically synthesized medicines. Over 25% of drugs worldwide are derived from plants, and surveys have shown
[...] Read more.
Herbal medicine has been gaining special interest as an alternative choice of treatment for several diseases, being generally accessible, cost-effective and safe, with fewer side-effects compared to chemically synthesized medicines. Over 25% of drugs worldwide are derived from plants, and surveys have shown that, when available, herbal medicine is the preferred choice of treatment. Origanum syriacum (Lamiaceae) is a widely used medicinal plant in the Middle East, both as a home and a folk remedy, and in the food and beverage industry. Origanum syriacum contains numerous phytochemical compounds, including flavonoids, phenols, essential oils, and many others. Because of its bioactive compounds, O. syriacum possesses antioxidant, antimicrobial, and antiparasitic capacities. In addition, it can be beneficial in the treatment of various diseases such as cancer, neurodegenerative disorders, and peptic ulcers. In this review, the chemical compositions of different types of extracts and essential oils from this herb will first be specified. Then, the pharmacological uses of these extracts and essential oils in various contexts and diseases will be discussed, putting emphasis on their efficacy and safety. Finally, the cellular and molecular mechanisms of O. syriacum phytochemicals in disease treatment will be described as a basis for further investigation into the plant’s pharmacological role.
Full article
(This article belongs to the Special Issue Natural Medicines: Chemical Constituents and Pharmacological Activities)
Open AccessArticle
Anti-Inflammatory and Wound Healing Properties of Leaf and Rhizome Extracts from the Medicinal Plant Peucedanum ostruthium (L.) W. D. J. Koch
by
, , , , , and
Molecules 2022, 27(13), 4271; https://doi.org/10.3390/molecules27134271 (registering DOI) - 02 Jul 2022
Abstract
Peucedanum ostruthium (L.) W. D. J. Koch (Apiaceae) is a worldwide perennial herb native to the mountains of central Southern Europe. The rhizome has a long tradition in popular medicine, while ethnobotanical surveys have revealed local uses of leaves for superficial injuries. To
[...] Read more.
Peucedanum ostruthium (L.) W. D. J. Koch (Apiaceae) is a worldwide perennial herb native to the mountains of central Southern Europe. The rhizome has a long tradition in popular medicine, while ethnobotanical surveys have revealed local uses of leaves for superficial injuries. To experimentally validate these uses, plant material was collected in the Gran Paradiso National Park, Aosta Valley, Italy, and the rhizome and leaves were micromorphologically and phytochemically characterized. Polyphenol-enriched hydroalcoholic rhizome and leaf extracts, used in cell-free assays, showed strong and concentration-dependent antioxidant and anti-inflammatory activities. In vitro tests revealed cyclooxygenase and lipoxygenase inhibition by the leaf extract, while the rhizome extract induced only lipoxygenase inhibition. MTT assays on HaCaT keratinocytes and L929 fibroblasts showed low cytotoxicity of extracts. In vitro scratch wound test on HaCaT resulted in a strong induction of wound closure with the leaf extract, while the effect of the rhizome extract was lower. The same test on L929 cells showed similar wound closure induction with both extracts. The results confirmed the traditional medicinal uses of the rhizome as an anti-inflammatory and wound healing remedy for superficial injuries but also highlighted that the leaves can be exploited for these purposes with equal or superior effectiveness.
Full article
(This article belongs to the Special Issue Synthesis, Extraction and Biological Evaluations of Natural Products)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Disentangling Unusual Catalytic Properties and the Role of the [4Fe-4S] Cluster of Three Endonuclease III from the Extremophile D. radiodurans
by
, , , , and
Molecules 2022, 27(13), 4270; https://doi.org/10.3390/molecules27134270 (registering DOI) - 02 Jul 2022
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase with specificity for a broad range of oxidized DNA lesions. The genome of an extremely radiation- and desiccation-resistant bacterium, Deinococcus radiodurans, possesses three genes encoding for EndoIII-like enzymes (DrEndoIII1, DrEndoIII2 and DrEndoIII3), which reveal
[...] Read more.
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase with specificity for a broad range of oxidized DNA lesions. The genome of an extremely radiation- and desiccation-resistant bacterium, Deinococcus radiodurans, possesses three genes encoding for EndoIII-like enzymes (DrEndoIII1, DrEndoIII2 and DrEndoIII3), which reveal different types of catalytic activities. DrEndoIII2 acts as the main EndoIII in this organism, while DrEndoIII1 and 3 demonstrate unusual and no EndoIII activity, respectively. In order to understand the role of DrEndoIII1 and DrEndoIII3 in D. radiodurans, we have generated mutants which target non-conserved residues in positions considered essential for classic EndoIII activity. In parallel, we have substituted residues coordinating the iron atoms in the [4Fe-4S] cluster in DrEndoIII2, aiming at elucidating the role of the cluster in these enzymes. Our results demonstrate that the amino acid substitutions in DrEndoIII1 reduce the enzyme activity without altering the overall structure, revealing that the residues found in the wild-type enzyme are essential for its unusual activity. The attempt to generate catalytic activity of DrEndoIII3 by re-designing its catalytic pocket was unsuccessful. A mutation of the iron-coordinating cysteine 199 in DrEndoIII2 appears to compromise the structural integrity and induce the formation of a [3Fe-4S] cluster, but apparently without affecting the activity. Taken together, we provide important structural and mechanistic insights into the three EndoIIIs, which will help us disentangle the open questions related to their presence in D. radiodurans and their particularities.
Full article
(This article belongs to the Special Issue Metalloenzyme Biogenesis and Biocatalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing the Role of a Malonamide Linker in the Design of Potent Dual Inhibitors of Factor Xa and Cholinesterases
by
, , , , , , and
Molecules 2022, 27(13), 4269; https://doi.org/10.3390/molecules27134269 (registering DOI) - 02 Jul 2022
Abstract
The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to
[...] Read more.
The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure–activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2′,4′-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer’s disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.
Full article
(This article belongs to the Special Issue Recent Trends on Enzymes Inhibitors and Activators in Drug Research 3.0)
►▼
Show Figures

Figure 1
Open AccessArticle
A Novel Gelatin-Based Sustained-Release Molluscicide for Control of the Invasive Agricultural Pest and Disease Vector Pomacea canaliculata
Molecules 2022, 27(13), 4268; https://doi.org/10.3390/molecules27134268 (registering DOI) - 02 Jul 2022
Abstract
Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release
[...] Read more.
Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release effect and are toxic to nontarget organisms. Thus, these molluscicides cannot be used on a large scale to effectively act on snails. In this study, gelatin, a safe and nontoxic substance, was combined with sustained-release molluscicide and was found to reduce the toxicity of niclosamide to nontarget organisms. We assessed the effects of gelatin and molluscicide in controlling P. canaliculata snails and eggs. The results demonstrated that the niclosamide retention time with 1.0% and 1.5% gelatin sustained-release agents reached 20 days. Additionally, the mortality rate of P. canaliculata and their eggs increased as the concentration of the niclosamide sustained-release agents increased. The adult mortality rate of P. canaliculata reached 50% after the snails were exposed to gelatin with 0.1 mg/L niclosamide for 48 h. The hatching rate of P. canaliculata was only 28.5% of the normal group after the treatment was applied. The sustained-release molluscicide at this concentration was less toxic to zebrafish, which means that this molluscicide can increase the safety of niclosamide to control P. canaliculata in aquatic environments. In this study, we explored the safety of using niclosamide sustained-release agents with gelatin against P. canaliculata. The results suggest that gelatin is an ideal sustained-release agent that can provide a foundation for subsequent improvements in control of P. canaliculata.
Full article
Open AccessArticle
Cholesterol Alters the Phase Separation in Model Membranes Containing hBest1
by
, , , , , and
Molecules 2022, 27(13), 4267; https://doi.org/10.3390/molecules27134267 (registering DOI) - 02 Jul 2022
Abstract
Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl- channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and
[...] Read more.
Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl- channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs−1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.
Full article
(This article belongs to the Special Issue Bioactive Molecules: Isolation, Synthesis, Analysis, and Application in Medicinal Chemistry)
Open AccessArticle
Mulberry Ethanol Extract and Rutin Protect Alcohol-Damaged GES-1 Cells by Inhibiting the MAPK Pathway
by
, , , , , and
Molecules 2022, 27(13), 4266; https://doi.org/10.3390/molecules27134266 (registering DOI) - 02 Jul 2022
Abstract
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring.
[...] Read more.
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 μg/mL MBE and 320 μM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.
Full article
(This article belongs to the Special Issue Bioactive Compounds in Fermented Foods and Beverages)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Evaluation of the Use of Elicitors for the Production of Antioxidant Compounds in Liquid Cultures of Ganoderma curtisii from Costa Rica
Molecules 2022, 27(13), 4265; https://doi.org/10.3390/molecules27134265 (registering DOI) - 02 Jul 2022
Abstract
The use of substances or conditions as elicitors can significantly increase the production of secondary metabolites. In this research, the effects of different elicitors on the production of antioxidant secondary metabolites were evaluated in a strain of Ganoderma sp. The elicitors tested were
[...] Read more.
The use of substances or conditions as elicitors can significantly increase the production of secondary metabolites. In this research, the effects of different elicitors on the production of antioxidant secondary metabolites were evaluated in a strain of Ganoderma sp. The elicitors tested were pH changes in different growth phases of the fungus (pH 3, 5.5 and 8), different concentrations of peptone as a nitrogen source (1 g/L and 10 g/L), and the addition of chemical agents to the culture medium (ethanol, growth regulators, and salts). The alkaline pH during the stationary phase and the high availability of nitrogen were effective elicitors, producing cultures with higher antioxidant activity (37.87 g/L and 43.13 g/L dry biomass) although there were no significant differences with other treatments.
Full article
(This article belongs to the Special Issue Bioactive Compounds of Fruits, Vegetables and Mushrooms II)
Open AccessArticle
Modulatory Effect of Diosmin and Diosmetin on Metalloproteinase Activity and Inflammatory Mediators in Human Skin Fibroblasts Treated with Lipopolysaccharide
Molecules 2022, 27(13), 4264; https://doi.org/10.3390/molecules27134264 (registering DOI) - 01 Jul 2022
Abstract
Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing
[...] Read more.
Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing an anti-edematous effect. In this paper, we investigated the effectiveness of diosmin and diosmetin in modulating the level of proinflammatory factors in human skin fibroblasts treated with lipopolysaccharide (LPS). Two variants of the experiments were performed: the flavonoid was added 2 h prior to or 24 h after LPS stimulation. Our study revealed that both flavonoids reduced the levels of IL-6 and Il-1β as well as COX-2 and PGE2 but had no impact on IL-10. However, the addition of the compounds prior to the LPS addition was more effective. Moreover, diosmetin modulated the proinflammatory factors more strongly than diosmin. Our investigations also showed that both flavonoids were potent inhibitors of elastase and collagenase activity, and no differences between the glycoside and aglycone forms were observed.
Full article
(This article belongs to the Special Issue Plant Bioactive Compounds: Extraction, Identification and Biological Activities)
Open AccessArticle
Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography
Molecules 2022, 27(13), 4263; https://doi.org/10.3390/molecules27134263 (registering DOI) - 01 Jul 2022
Abstract
Parabens (PBs) are used as preservatives to extend the shelf life of various foodstuffs, and pharmaceutical and cosmetic preparations. In this work, the membrane barrier passage potential of a subset of seven parabens, i.e., methyl-, ethyl-, propyl- isopropyl, butyl, isobutyl, and benzyl paraben,
[...] Read more.
Parabens (PBs) are used as preservatives to extend the shelf life of various foodstuffs, and pharmaceutical and cosmetic preparations. In this work, the membrane barrier passage potential of a subset of seven parabens, i.e., methyl-, ethyl-, propyl- isopropyl, butyl, isobutyl, and benzyl paraben, along with their parent compound, p-hydroxy benzoic acid, were studied. Thus, the Franz cell diffusion (FDC) method, biomimetic liquid chromatography (BLC), and in silico prediction were performed to evaluate the soundness of both describing their permeation through the skin. While BLC allowed the achievement of a full scale of affinity for membrane phospholipids of the PBs under research, the permeation of parabens through Franz diffusion cells having a carbon chain > ethyl could not be measured in a fully aqueous medium, i.e., permeation enhancer-free conditions. Our results support that BLC and in silico prediction alone can occasionally be misleading in the permeability potential assessment of these preservatives, emphasizing the need for a multi-technique and integrated experimental approach.
Full article
(This article belongs to the Special Issue Analytical Aspects in Environmental Pollution Monitoring)
Open AccessCommunication
Investigation on the Peroxidase-like Activity of Vitamin B6 and Its Applications in Colorimetric Detection of Hydrogen Peroxide and Total Antioxidant Capacity Evaluation
Molecules 2022, 27(13), 4262; https://doi.org/10.3390/molecules27134262 (registering DOI) - 01 Jul 2022
Abstract
The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing the peroxidase chromogenic substrate 3,3’,5,5’-tetramethylbenzidine (TMB) at the existence of H2O2. The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6 concentration,
[...] Read more.
The peroxidase-like activity of vitamin B6 (VB6) was firstly demonstrated by catalyzing the peroxidase chromogenic substrate 3,3’,5,5’-tetramethylbenzidine (TMB) at the existence of H2O2. The influence of different factors on the catalytic property of VB6, including pH, temperature, VB6 concentration, and incubation time, were investigated. The steady-state kinetic study results indicate that VB6 possesses higher affinity to H2O2 than natural horseradish peroxidase and some other peroxidase mimics. Besides, the radical quenching experiment results confirm that hydroxyl radical (•OH) accounts for the catalytic process. Based on the excellent peroxidase-like catalytic activity of VB6, the colorimetric methods for H2O2 and gallic acid (GA) detection were developed by measuring the absorbance variance of the catalytic system. Under the optimal conditions, the linear ranges of the methods for H2O2 and GA determination with good selectivity are 50.0–600.0 μM and 10.0–50.0 μM, respectively. In addition, the developed method was applied in the detection of H2O2 in milk samples and evaluation of total antioxidant capacity of different tea infusions. This study may broaden the application prospect of VB6 in environmental and biomedical analysis fields, contribute to profound insight of the physiological functions of VB6, as well as lay foundation for further excavation of small-molecule peroxidase mimics.
Full article
(This article belongs to the Special Issue Exclusive Papers from the Editorial Board Members (EBMs) of the Section “Medicinal Chemistry” of Molecules)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides
by
, , , , , , , and
Molecules 2022, 27(13), 4261; https://doi.org/10.3390/molecules27134261 (registering DOI) - 01 Jul 2022
Abstract
Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties
[...] Read more.
Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.
Full article
Open AccessArticle
Anti-Inflammatory Activity of Essential Oil from Zingiber ottensii Valeton in Animal Models
by
, , , and
Molecules 2022, 27(13), 4260; https://doi.org/10.3390/molecules27134260 (registering DOI) - 01 Jul 2022
Abstract
Zingiber ottensii (ZO) Valeton, a local plant in Northern Thailand, has been widely used in traditional medicine. Many studies using in vitro models reveal its pharmacological activities, including the anti-inflammatory activity of ZO essential oil, extracted from ZO rhizomes. However, the scientific report
[...] Read more.
Zingiber ottensii (ZO) Valeton, a local plant in Northern Thailand, has been widely used in traditional medicine. Many studies using in vitro models reveal its pharmacological activities, including the anti-inflammatory activity of ZO essential oil, extracted from ZO rhizomes. However, the scientific report to confirm its anti-inflammatory activity using animal models is still lacking. The present study aimed to evaluate the anti-inflammatory activity and explore the possible mechanisms of action of ZO essential oil in rats. The results revealed that ZO essential oil significantly reduced the ear edema formation induced by ethyl phenylpropiolate. Pre-treatment with ZO essential oil significantly reduced the carrageenan-induced hind paw edema and the severity of inflammation in paw tissue. In addition, pre-treatment with ZO essential oil exhibited decreased COX-2 and pro-inflammatory cytokine TNF-α expression in paw tissue, as well as PGE2 levels in serum. On this basis, our study suggests that ZO essential oil possesses anti-inflammatory activity in animal models. Its possible mechanisms of action may involve the inhibition of TNF-α expression as well as the inhibition of COX-2 and PGE2 production. These findings provide more crucial data of ZO essential oil that may lead to new natural anti-inflammatory product development in the future.
Full article
(This article belongs to the Special Issue Anti-Inflammatory Activity of Natural Products II)
Open AccessArticle
Analysis and Evaluation of the Flagellin Activity of Bacillus amyloliquefaciens Ba168 Antimicrobial Proteins against Penicillium expansum
by
, , , , , , and
Molecules 2022, 27(13), 4259; https://doi.org/10.3390/molecules27134259 (registering DOI) - 01 Jul 2022
Abstract
Blue mold caused by Penicillium expansum is one of the most common apple diseases, and it is becoming a serious threat in apple production. The strain Bacillus amyloliquefaciens Ba168 showed high levels of antimicrobial activity in our previous study. To analyze the antimicrobial
[...] Read more.
Blue mold caused by Penicillium expansum is one of the most common apple diseases, and it is becoming a serious threat in apple production. The strain Bacillus amyloliquefaciens Ba168 showed high levels of antimicrobial activity in our previous study. To analyze the antimicrobial protein of Ba168, a high-resolution LC-MS/MS proteomic analysis was performed. A total of 1155 proteins were identified from 5233 unique peptides. A total of 16 potential antimicrobial-activity-related proteins were identified; 10 of these proteins have direct antimicrobial effects, while 6 of these proteins are associated with the formation of antimicrobial substances. Then, an antifungal protein of Ba168 was isolated and purified by the sequential chromatography of DEAE Bio-sep FF anion exchange and Sephadex G-75. The single protein, named BP8-2, showed antifungal activity towards Penicillium expansum. The peptide mass fingerprinting of the protein band of BP8-2 had a high similarity with the amino acid sequences of flagellin protein. The results showed that BP8-2 significantly inhibited the growth of P. expansum and slowed the spread of apple blue mold. The results indicated that flagellin is one of the important antimicrobial substances from Ba168.
Full article
Open AccessArticle
Evaluation of Acidic Ionic Liquids as Catalysts for Furfural Production from Eucalyptus nitens Wood
Molecules 2022, 27(13), 4258; https://doi.org/10.3390/molecules27134258 (registering DOI) - 01 Jul 2022
Abstract
Eucalyptus nitens wood samples were subjected to hydrothermal processing to obtain soluble saccharides from the hemicellulosic fraction. The hemicellulose-derived saccharides were employed as substrates for furfural production in biphasic media made up of water, methyl isobutyl ketone, and one acidic ionic liquid (1-butyl-3-methylimidazolium
[...] Read more.
Eucalyptus nitens wood samples were subjected to hydrothermal processing to obtain soluble saccharides from the hemicellulosic fraction. The hemicellulose-derived saccharides were employed as substrates for furfural production in biphasic media made up of water, methyl isobutyl ketone, and one acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate or 1-(3-sulfopropyl)-3-methylimidazolium hydrogen sulfate). The reactions were carried out in a microwave-heated reactor to assess the effects of the most influential variables. Under selected operational conditions, the molar conversions of the precursors into furfural were within the range of 77–86%. The catalysts conserved their activity after reutilization in five consecutive reaction cycles.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry)
Open AccessArticle
A Simple Structure-Switch Aptasensor Using Label-Free Aptamer for Fluorescence Detection of Aflatoxin B1
Molecules 2022, 27(13), 4257; https://doi.org/10.3390/molecules27134257 (registering DOI) - 01 Jul 2022
Abstract
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control.
[...] Read more.
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control. Aptamers can specifically bind to targets with high affinity, showing advantages in affinity assays and biosensors. We reported an aptamer structure-switch for fluorescent detection of aflatoxin B1 (AFB1), using a label-free aptamer, a fluorescein (FAM)-labeled complementary strand (FDNA), and a quencher (BHQ1)-labeled complementary strand (QDNA). When AFB1 is absent, these three strands assemble into a duplex DNA structure through DNA hybridization, making FAM close to BHQ1, and fluorescence quenching occurs. In the presence of AFB1, the aptamer binds with AFB1, instead of hybridizing with QDNA. Thus, FAM is apart from BHQ1, and fluorescence increases with the addition of AFB1. This assay allowed detection of AFB1 with a detection limit of 61 pM AFB1 and a dynamic concentration range of 61 pM to 4 μM. This aptamer-based method enabled detection of AFB1 in complex sample matrix (e.g., beer and corn flour samples).
Full article
(This article belongs to the Special Issue Aptamer Generation and Bioapplication)

Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Chemistry, Molecules, Nanomaterials, Photochem, Solids
Synthesis, Properties and Applications of Fluorescent Nanomaterials
Topic Editors: Mohammed Jaouad Meziani, Zhaohui LiDeadline: 31 August 2022
Topic in
Geosciences, Minerals, Molecules, Photonics, Vibration
Study of Minerals by Molecular Spectroscopy
Topic Editors: Katarzyna Chruszcz-Lipska, Urszula SoleckaDeadline: 27 September 2022
Topic in
Agronomy, Foods, Molecules, Sustainability, Crops
Bioactives and Ingredients from Agri-Food Wastes
Topic Editors: Vito Michele Paradiso, Ângela Fernandes, Marta Igual RamoDeadline: 30 November 2022
Topic in
Coatings, Colloids and Interfaces, Gels, Molecules, Polymers
Insight into Liquid/Fluid Interfaces
Topic Editors: Eduardo Guzmán, Armando MaestroDeadline: 31 December 2022

Conferences
8–22 July 2022
2nd International Electronic Conference on Biomolecules: Biomacromolecules and the Modern World Challenges (IECBM2022)

Special Issues
Special Issue in
Molecules
Food Waste and Circular Bioeconomy: New Nutraceutical and Pharmaceutical
Guest Editor: Roberta CostiDeadline: 15 July 2022
Special Issue in
Molecules
Bioactive Natural Compounds: Isolation, Analysis and Evaluation
Guest Editors: Vassya Bankova, Milena PopovaDeadline: 30 July 2022
Special Issue in
Molecules
Phytochemicals in Organically and Conventionally Produced Plants
Guest Editors: Valtcho Jeliazkov, Mark A. BerhowDeadline: 31 July 2022
Special Issue in
Molecules
Advances in Shape Memory Polymers and Polymeric Nanocomposites
Guest Editors: Laura Peponi, Valentina SessiniDeadline: 15 August 2022
Topical Collections
Topical Collection in
Molecules
Ultrasound- and Microwave-Assisted Extraction of Bioactive Compounds
Collection Editors: Stela Jokić, Jelena Vladić
Topical Collection in
Molecules
Novel Approache of Anticancer Therapy
Collection Editor: Isabelle Mus-Veteau
Topical Collection in
Molecules
Early-Career Researchers in Chemistry
Collection Editors: Antonella Curulli, Eugenio Aprea, Francesca Cardona, Ioanna Chinou, James Gauld, Lakshmi Kotra, Maurizio Peruzzini