Alkynes: From Reaction Design to Applications in Organic Synthesis

Message from the Guest Editor

Dear Colleagues,

Alkyne functionality represents one of the most valuable building blocks of organic chemistry. Despite its seeming simplicity, it combines many unusual and attractive features. Furthermore, alkynes have the same oxidation state as carbonyl compounds and, hence, via simple addition of nucleophiles, offer a “hidden door” entry into carbonyl chemistry. Due to the presence of two independently addressable \( \pi \)-systems, alkynes can readily form four (and, under certain conditions, up to six) new bonds, lending themselves perfectly to the design of cascade transformations. The recent examples of unusual alkyne transformations include ionic chemistry of neutral hydrocarbons, preparation of radicals without radical initiators, generation of excited states without light, "1,2-dicarbene reactivity" of alkynes in "boomerang" radical processes, selective conversion of alkynes into carbonyl compounds, and full disassembly of the alkyne moiety.

Prof. Dr. Igor V. Alabugin

Guest Editor
Message from the Editor-in-Chief

As the premier open access journal dedicated to experimental organic chemistry, and now in its 22nd year of publication, the papers published in *Molecules* span from classical synthetic methodology to natural product isolation and characterization, as well as physicochemical studies and the applications of these molecules as pharmaceuticals, catalysts and novel materials. Pushing the boundaries of the discipline, we invite papers on multidisciplinary topics bridging biochemistry, biophysics and materials science, as well as timely reviews and topical issues on cutting edge fields in all these areas.

Author Benefits

**Open Access:** free for readers, with article processing charges (APC) paid by authors or their institutions.

**High visibility:** indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Scopus and other databases.

**Rapid publication:** manuscripts are peer-reviewed and a first decision provided to authors approximately 13.1 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2019).

Contact Us

*Molecules*

MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com

mdpi.com/journal/molecules
molecules@mdpi.com
@Molecules_MDPI