Special Issue # Green Mining, Waste Recovery and Efficient Disposal of Metal Mines ## Message from the Guest Editors Metal minerals such as copper, rare-earth ores, uranium and gold are intimately related to intelligent manufacturing, electric engineering, commercial building, nuclear power and other fields, providing vital basic metal resources. The green mining of metal ores refers to mining technology that employs solution mining (copper sulfide heap leaching, rare earth in situ leaching, uranium in situ leaching, etc.), cemented/paste backfilling and other processing technologies in order to achieve the recovery of metal minerals and the efficient disposal of mine wastes. With unique advantages, such as low levels of waste discharge, low infrastructure costs, efficient mining and waste disposal, green mining is considered to be a crucial research direction for the future development of metal mines. This Special Issue, entitled "Green Mining, Waste Recovery and Efficient Disposal of Metal Mines", aims to provide a useful reference for industrial engineers and research scholars particularly involved in mining engineering, metallurgy engineering, minerals processing and materials science, among others. ### **Guest Editors** Dr. Leiming Wang School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China Prof. Dr. Shenghua Yin School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China ### Deadline for manuscript submissions closed (31 December 2024) # **Minerals** an Open Access Journal by MDPI Impact Factor 2.2 CiteScore 4.4 mdpi.com/si/181719 Minerals Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 minerals@mdpi.com mdpi.com/journal/ minerals # **Minerals** an Open Access Journal by MDPI Impact Factor 2.2 CiteScore 4.4 ## **About the Journal** ## Message from the Editor-in-Chief Minerals welcomes submissions that report basic and applied research in mineralogy. Research areas of traditional interest are mineral deposits, mining, mineral processing and environmental mineralogy. The journal footprint also includes novel uses of elemental and isotopic analyses of minerals for petrology, geochronology and thermochronology, thermobarometry, ore genesis and sedimentary provenance. Contributions are encouraged in emerging research areas such as applications of quantitative mineralogy to the oil and gas, manufacturing, forensic science, climate change, geohazard and health sectors. ## **Fditor-in-Chief** Prof. Dr. Leonid Dubrovinsky Bayerisches Geoinstitut, University Bayreuth, D-95440 Bayreuth, Germany ### **Author Benefits** ### **High Visibility:** indexed within Scopus, SCIE (Web of Science), GeoRef, CaPlus / SciFinder, Inspec, Astrophysics Data System, AGRIS, and other databases. ### Journal Rank: JCR - Q2 (Mining and Mineral Processing) / CiteScore - Q1 (Geology) ## **Rapid Publication:** manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.2 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).