Special Issue

Novel Ultra Wide Bandgap Power Devices and Materials

Message from the Guest Editor

Ultra-wide bandgap (UWBG) devices are attracting increasing attention due to their potentially higher ruggedness in power electronics applications and harsh environments. Promising UWBG materials include but are not limited to gallium oxide (Ga2O3), diamond. aluminum nitride (AIN), and boron nitride (BN). Due to their ultra-wide bandgaps (>3.5eV), they are expected to have higher breakdown voltages and to be more immune to failure in radiative and highly temperate environments. However, due to the large bandgaps, shallow dopants are rare. Therefore, novel devices are required to fully unfurl their power. Examples of novel devices include Ga2O3 junctionless devices, devices with special edge termination structures such as Ar implant. NiO/Ga2O3 p-n diode, diamonds with surface hydrogen passivation, and AlyGa1-yN/AlxGa1-xN heterostructure using 2DEG for conduction.

Guest Editor

Dr. Hiu-Yung Wong

Department of Electrical Engineering, San José State University, San José, CA 95192, USA

Deadline for manuscript submissions

closed (30 April 2021)

Micromachines

an Open Access Journal by MDPI

Impact Factor 3.0 CiteScore 6.0 Indexed in PubMed

mdpi.com/si/58713

Micromachines
Editorial Office
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
micromachines@mdpi.com

mdpi.com/journal/micromachines

an Open Access Journal by MDPI

Impact Factor 3.0 CiteScore 6.0 Indexed in PubMed

About the Journal

Message from the Editor-in-Chief

You are invited to contribute research articles or comprehensive reviews for consideration and publication in *Micromachines* (ISSN 2072-666X). *Micromachines* is published in the open access format. Research articles, reviews and other contents are released on the internet immediately after acceptance. The scientific community and the general public have unlimited free access to the content as soon as it is published. As an open access journal, *Micromachines* is supported by the authors or their institutes by payment of article processing charges (APC) for accepted papers. We are pleased to welcome you as our authors.

Editor-in-Chief

Prof. Dr. Ai-Qun Liu

- 1. Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- 2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Author Benefits

High Visibility:

indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Ei Compendex, dblp, and other databases.

Journal Rank:

JCR - Q2 (Instruments and Instrumentation) / CiteScore - Q1 (Mechanical Engineering)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.2 days after submission; acceptance to publication is undertaken in 1.9 days (median values for papers published in this journal in the first half of 2025).

