Special Issue

Mechanical Alloying: Processing and Materials

Message from the Guest Editor

Mechanical alloying is a versatile process for the production of powders. The size and size distribution of the particles change as a result of continuous fracture welding. It has been utilized in different areas of materials processing and applied to obtain different material systems; oxide dispersion strengthened materials, intermetallics, ceramics, composites, nanostructured materials, amorphous materials, mechanochemical reaction materials. The products obtained after MA process depends on several parameters as: geometric and dynamic parameters of mill design, the character of motion of milling bodies, the physical and mechanical characteristics of milling bodies, the characteristics of processed substances, a mass ratio of milling bodies to powder, temperature of the vial, milling atmosphere, selection of process control agents, the filling factor of the vial, Moreover, the experimental milling devices to perform the alloying process are very different: attritor, shaker mill, horizontal ball mill, planetary mill, ball mill controlled by magnetic force.

Guest Editor

Prof. Dr. Joan-Josep Suñol

Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain

Deadline for manuscript submissions

closed (31 December 2020)

Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3

mdpi.com/si/24233

*Metals*Editorial Office

MDPI, Grosspeteranlage 5

4052 Basel, Switzerland Tel: +41 61 683 77 34 metals@mdpi.com

mdpi.com/journal/ metals

Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3

About the Journal

Message from the Editorial Board

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Editors-in-Chief

Prof. Dr. Hugo F. Lopez

Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

Prof. Dr. Yong Zhang

Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

Author Benefits

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, and other databases.

Journal Rank:

JCR - Q2 (Metallurgy and Metallurgical Engineering) / CiteScore - Q1 (Metals and Alloys)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).