Special Issue # State-of-the-Art Models for Describing Microstructure Evolution and Fatigue Prediction in Multicomponent Metallic Alloys ## Message from the Guest Editor Metallic alloys are predominantly utilized in the industrial sectors. IThe microstructural evolution of alloys during processing and service has a significant role on determining the overall performance of the materials. As metallic materials in practical applications are subjected to cyclic loading, their fatigue resistance is a highlighted topic. Statistical data and multiscale models can make it easier to predict the fatigue behavior of metallic alloys when subjected to periodic loads. The numerical quantification of fatigue-based damage accumulation, failures, and crack growth will enable the design of highly reliable devices. This Special Issue is aimed at recent advances in experimental data, computational models, and statistical models that are utilized to describe the microstructural evolution and fatigue behavior of multicomponent metallic alloys. Of particular interest are the insights into microstructure-based fatigue life models for multicomponent metallic alloys. #### **Guest Editor** Dr. Anil Kunwar Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland ### Deadline for manuscript submissions closed (30 September 2024) ## Metals an Open Access Journal by MDPI Impact Factor 2.5 CiteScore 5.3 ## mdpi.com/si/136310 Metals Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 metals@mdpi.com mdpi.com/journal/ metals ## Metals an Open Access Journal by MDPI Impact Factor 2.5 CiteScore 5.3 ## **About the Journal** ## Message from the Editorial Board Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community. #### **Editors-in-Chief** ## Prof. Dr. Hugo F. Lopez Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA ## Prof. Dr. Yong Zhang Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China #### **Author Benefits** ### **High Visibility:** indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, and other databases. #### Journal Rank: JCR - Q2 (Metallurgy and Metallurgical Engineering) / CiteScore - Q1 (Metals and Alloys) ### **Rapid Publication:** manuscripts are peer-reviewed and a first decision is provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).