# **Special Issue**

# Environmentally Assisted Cracking in Advanced High Strength Alloys

## Message from the Guest Editors

Environmentally assisted cracking (EAC), an intricate interaction between the environment, stress state, and material, results in brittle fracture of otherwise ductile materials. EAC covers a broad range of failure in materials, such as stress corrosion cracking (SCC), corrosion fatigue, hydrogen embrittlement, sulfide stress cracking, hydrogen enhanced fatigue, irradiation induced SCC, to name a few. All different forms of EAC have been studied extensively, and, for a relatively long time, generating a vast body of knowledge. This Special Issue presents the latest research on EAC of advanced alloys. Our topics of interest include, but are not limited to:

- Stress corrosion cracking;
- Environmentally assisted fracture;
- Hydrogen embrittlement;
- Mechanical aspects of corrosion;
- Hydrogen enhanced cracking;
- Irradiation-induced SCC;
- In situ testing

# **Guest Editors**

Prof. Dr. Afrooz Barnoush Curtin Corrosion Center, Curtin University, Technology Park, Bentley, WA 6102, Australia

Prof. Dr. Mariano lannuzzi Curtin Corrosion Centre, Curtin University, Bentley, WA 6102, Australia

### Deadline for manuscript submissions

closed (31 December 2017)



# Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3



mdpi.com/si/8762

Metals Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 metals@mdpi.com

mdpi.com/journal/

metals





# Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3



metals



# About the Journal

# Message from the Editorial Board

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

## Editors-in-Chief

#### Prof. Dr. Hugo F. Lopez

Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

#### Prof. Dr. Yong Zhang

Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

# Author Benefits

### **High Visibility:**

indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, and other databases.

### Journal Rank:

JCR - Q2 (Metallurgy and Metallurgical Engineering) / CiteScore - Q1 (Metals and Alloys)

### **Rapid Publication:**

manuscripts are peer-reviewed and a first decision is provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).