Special Issue

Composition Design and Damage Mechanism of Crystal Superalloys

Message from the Guest Editor

Due to their excellent resistance to mechanical and chemical degradation, poly- and single-crystal superalloys are high temperature materials used in gasturbine engines. The number of alloving elements in these alloys is usually greater than ten, and each element has a specific function for improving properties. Therefore, the composition design, on one hand, is always one critical aspect in developing the promising superalloys, which can perform excellently when serving at elevated temperatures. On the other hand, a long time service under harsh conditions, such as high temperature, high pressure, corrosive environment, and applied stress, could lead to damage in superalloys, which will result in the failure of component. Thus, the damage mechanisms of crystal superalloys is another key aspect. In this Special Issue, we welcome articles that focus on the composition design and damage mechanism of crystal superalloys. Papers on material preparation methods, alloy and component behaviour, and final products' performance are also encouraged.

Guest Editor

Prof. Dr. Nan Wang School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

Deadline for manuscript submissions

closed (31 August 2024)

Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3

mdpi.com/si/167677

Metals Editorial Office MDPI, Grosspeteranlage 5 4052 Basel, Switzerland Tel: +41 61 683 77 34 metals@mdpi.com

mdpi.com/journal/ metals

Metals

an Open Access Journal by MDPI

Impact Factor 2.5 CiteScore 5.3

metals

About the Journal

Message from the Editorial Board

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Editors-in-Chief

Prof. Dr. Hugo F. Lopez

Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

Prof. Dr. Yong Zhang

Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

Author Benefits

High Visibility:

indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, and other databases.

Journal Rank:

JCR - Q2 (Metallurgy and Metallurgical Engineering) / CiteScore - Q1 (Metals and Alloys)

Rapid Publication:

manuscripts are peer-reviewed and a first decision is provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).