Machining and Finishing of Nickel and Titanium Alloys

Message from the Guest Editors

Dear Colleagues,

Nickel and titanium alloys are high-temperature resistant alloys, essential in many applications. However, these materials are also characterized by their low machinability. With the aim of dealing with this drawback, new machining and finishing processes are being developed. They enable optimized component shapes, surface finishing and surface integrity for specific applications.

Problems related to machining of components of nickel and titanium alloys are far from being solved. New cooling systems, tools and tool's coatings, new abrasive processes and strategies are being investigated deeply. In addition, friendly and sustainable processes are including in the workshops.

The aim of this Special Issue is to highlight recent advancements related to machining and finishing of nickel and titanium based alloys mainly for aeroengine components. Machines, processes, assisted processes and new tools are now in a rapid evolution.

Prof. Dr. Naiara Ortega
Prof. Dr. Luis Norberto López de Lacalle
Guest Editors
Editor-in-Chief

Prof. Dr. Hugo F. Lopez
Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

Message from the Editor-in-Chief

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Author Benefits

Open Access:— free for readers, with article processing charges (APC) paid by authors or their institutions.
High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, CAPlus / SciFinder, and many other databases.
Journal Rank: JCR - Q2 (Metallurgy & Metallurgical Engineering) / CiteScore - Q2 (Metals and Alloys)

Contact Us

Metals
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/metals
metals@mdpi.com
@Metals_MDPI