Green Low-Carbon Technology for Metalliferous Minerals

Guest Editor:

Prof. Dr. Lijie Guo
1. Department of Mining Engineering, Beijing General Research Institute of Mining and Metallurgy (BGRIMM), Beijing 1000160, China
2. National Centre for International Research on Green Metal Mining (CIRGM), Beijing 102628, China

guolijie@bgrimm.com

Deadline for manuscript submissions: closed (31 August 2022)

Message from the Guest Editor

Metalliferous minerals play a central role in the global economy. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous minerals exploitation is not managed responsibly and sustainably. Prof. Guo of BGRIMM was the first to propose a new development concept for green low-carbon mining, which is vital to promote the development of metalliferous mineral resources shifting from extensive destructive mining to clean and energy-saving mining in future decades.

This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development. Topics addressed may include but are not limited to: Green low-carbon technologies, system and optimization method; Frontiers in mining with backfill; Mine waste and heat management; Geomechanical behavior of mine backfill; Energy-saving techniques in mining; Alternative by product materials for green mining; Green low-carbon development criteria of mining.

Editor-in-Chief

Prof. Dr. Hugo F. Lopez
Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Colorado, Boulder, CO 80309-0425, USA

Message from the Editor-in-Chief

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between structure, properties, and performance of metallic materials.
fundamentals. Topics include the relationships between processing, properties and microstructure – disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions and microstructural evolution, microstructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Author Benefits

Open Access: — free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q2 (Metallurgy & Metallurgical Engineering) / CiteScore - Q1 (Metals and Alloys)

Contact Us

Metals
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland

Tel: +41 61 683 77 34
www.mdpi.com

mdpi.com/journal/metals
metals@mdpi.com
@Metals_MDPI