Special Issue "Dental Implants and Biomaterials Innovations"

A special issue of Medicina (ISSN 1010-660X). This special issue belongs to the section "Dentistry".

Deadline for manuscript submissions: 20 December 2020.

Special Issue Editor

Prof. Dr. José Luis Calvo-Guirado
E-Mail Website
Guest Editor
Department Oral and Implant Surgery, Faculty of Oral Sciences, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain;
Department of Prosthodontics and Digital Technologies. School of Dental Medicine, State University of New York at Stony Brook, NY, USA
Interests: dental implants; surfaces treatments; biomaterials; biphasic grafts; graphene; chitosan; vitamin d; melatonin; bioactive liquid; dental implant design; biomedical engineering; tye of biomaterials and bioceramics; dentin bone grafts; implant conection
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue describe new treatments in implant dentistry related to surfaces, design, and treatments. Additionally, it seeks to evaluate different biomaterials and stimulating factors to obtain new bone formations.

Papers should cover trauma, chemical factors, and dental implants with new surfaces for bone stimulation and quick bone formation.

This Issue will evaluate also implant features (surfaces, design, connections , etc.) that can stimulate partially and complete edentulous patients with implant-supported fixed prostheses.

Basic research and experimental research are welcome related to implants, biomaterials, and stimulating factors.

It is my pleasure to invite you to submit a manuscript for this Special Issue. Full papers, communications, and reviews are all welcome.

Prof. José Luis Calvo-Guirado
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Medicina is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • prosthodontics
  • digital surgery
  • bone
  • dental implants
  • stimulation materials
  • melatonin

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Bone Marrow Mesenchymal Stromal Cells (BMMSCs) Augment Osteointegration of Dental Implants in Type 1 Diabetic Rabbits: An X-Ray Micro-Computed Tomographic Evaluation
Medicina 2020, 56(4), 148; https://doi.org/10.3390/medicina56040148 (registering DOI) - 25 Mar 2020
Abstract
Background and objectives: The study aimed to investigate the effect of bone marrow mesenchymal stromal cells (BMMSCs) on implant-bone osseointegration in type I diabetic New Zealand rabbits. Materials and methods: BMMSCs harvested from healthy rabbits were processed and validated for purity and [...] Read more.
Background and objectives: The study aimed to investigate the effect of bone marrow mesenchymal stromal cells (BMMSCs) on implant-bone osseointegration in type I diabetic New Zealand rabbits. Materials and methods: BMMSCs harvested from healthy rabbits were processed and validated for purity and osteocyte differentiability. Mandibular incisors of diabetic and control rabbits were carefully extracted, and the sockets were plugged with collagen sponges. Platelet-rich plasma (PRP) containing osteoinductive BMMSCs, and plain PRP were injected into the collagen sponge of the right and left sockets respectively. Dental implants of 2.6 mm diameter and 10 mm length were inserted into the collagen sponge of both sockets. All the animals were sacrificed six weeks post surgery to evaluate an early stage of osseointegration; the mandibles scanned by X-ray microcomputed tomography (μCT) and subjected to 3D analysis. The μCT parameters of the right implant were paired against that of the left side of each animal and analyzed by paired T-test. Results: The preclinical evaluation of the viability and osteocyte differentiation of the BMMSCs were consistent between both the donor samples. The osseointegration of dental implants with stem cell therapy (BMMSCs + PRP + collagen) in normal and diabetic rabbits was significantly higher than that of implants with adjunctive PRP + collagen only (p < 0.05). Conclusion: Stem Cell therapy with osteoinductive BMMSCs and PRP can offer a novel approach to enhance the osseointegration of dental implants in uncontrolled diabetic patients. Full article
(This article belongs to the Special Issue Dental Implants and Biomaterials Innovations)
Show Figures

Figure 1

Open AccessArticle
Sinus Augmentation with Simultaneous, Non-Submerged, Implant Placement Using a Minimally Invasive Hydraulic Technique
Medicina 2020, 56(2), 75; https://doi.org/10.3390/medicina56020075 - 13 Feb 2020
Abstract
Background and objectives: To evaluate whether sinus augmentation, using a minimally invasive implant device, via a non-submerged surgical approach, might negatively influence the outcome. Materials and Methods: A retrospective cohort study was conducted by evaluating patients’ files, classifying them into two groups. [...] Read more.
Background and objectives: To evaluate whether sinus augmentation, using a minimally invasive implant device, via a non-submerged surgical approach, might negatively influence the outcome. Materials and Methods: A retrospective cohort study was conducted by evaluating patients’ files, classifying them into two groups. Fifty patients (22 men 28 women) were included in the study, 25 in each group. The use of an implant device based on residual alveolar ridge height for sinus augmentation, radiographic evaluation, insertion torque, membrane perforation, post-operative healing, and a minimum of 12 months follow-up were evaluated. Results: The mean residual alveolar ridge height was 5.4 mm for the non-submerged group and 4.2 mm for the submerged group. There were no intraoperative or postoperative complications (including membrane perforations). The mean insertion torque was 45 N/cm for the study group and 20 N/cm for the control group. Complete soft tissue healing was observed within three weeks. Mean bone gain height was 8 mm for the study and 9.3 mm for the control group. All implants osseointegrated after 6–9 months of healing time. Mean follow-up was 17.5 months, range 12–36 months. Marginal bone loss at last follow-up was not statistically significantly different: 1 mm in the non-submerged vs. 1.2 mm in the submerged group. Conclusions: Submerged and non-submerged healing following maxillary sinus augmentation was comparable provided residual alveolar ridge height >5 mm and insertion torque >25 N/cm. Full article
(This article belongs to the Special Issue Dental Implants and Biomaterials Innovations)
Show Figures

Figure 1

Open AccessArticle
Safety and Efficacy of a New Synthetic Material Based on Monetite, Silica Gel, PS-Wallastonite, and a Hydroxyapatite Calcium Deficient: A Randomized Comparative Clinic Trial
Medicina 2020, 56(2), 46; https://doi.org/10.3390/medicina56020046 - 21 Jan 2020
Abstract
Background and Objectives: Maxillary bone defects related to post-extraction alveolar ridge resorption are usual. These defects may lead to failure in further surgical implant phases given the lack of bone volume to perform the dental implant. The objective of this clinical assay [...] Read more.
Background and Objectives: Maxillary bone defects related to post-extraction alveolar ridge resorption are usual. These defects may lead to failure in further surgical implant phases given the lack of bone volume to perform the dental implant. The objective of this clinical assay was to evaluate the safety and efficacy of an experimental synthetic bone substitute in the preservation of post-extraction maxillary alveoli. Materials and Methods: 33 voluntary patients who had at least one maxillary premolar tooth that was a candidate for exodontia (n = 39) and subsequent implant rehabilitation participated. The regenerated alveoli were monitored by means of periodic clinical examinations (days 9 ± 1, 21 ± 4, 42 ± 6, and 84 ± 6), measuring the height and width of the alveolar crest (days 0 and 180 ± 5), measurement of radiodensity using tomographic techniques (days 0–5 and 175 ± 5), and histological examination of biopsies collected at 180 ± 5 days. Results: No significant differences were observed during the entire follow-up period between the two groups with respect to the safety variables studied. A variation in width of −0.9 ± 1.3 mm and −0.6 ± 1.5 mm, and a variation in height of −0.1 ± 0.9 mm and −0.3 ± 0.7 mm was observed for experimental material Sil-Oss® and Bio-Oss®, respectively. The radiodensity of the alveoli regenerated with the experimental material was significantly lower than that corresponding to Bio-Oss®. However, the histological study showed greater osteoid matrix and replacement of the material with newformed bone in the implanted beds with the experimental material. Conclusions: Both materials can be used safely and proved equally effective in maintaining alveolar flange dimensions, they are also histologically biocompatible, bioactive and osteoconductive. The experimental material showed the advantage of being resorbable and replaced with newformed bone, in addition to promoting bone regeneration. Full article
(This article belongs to the Special Issue Dental Implants and Biomaterials Innovations)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Dental Implants in Patients with Oral Lichen Planus: A Systematic Review
Medicina 2020, 56(2), 53; https://doi.org/10.3390/medicina56020053 - 27 Jan 2020
Abstract
Background and Objectives: To integrate the available published data on patients with oral lichen planus (OLP) rehabilitated with dental implants, as well as to review the recommendations for OLP patients receiving implants. Materials and Methods: An electronic search was undertaken in [...] Read more.
Background and Objectives: To integrate the available published data on patients with oral lichen planus (OLP) rehabilitated with dental implants, as well as to review the recommendations for OLP patients receiving implants. Materials and Methods: An electronic search was undertaken in February 2019 using five databases. Publications reporting cases of patients with OLP and rehabilitated with implant-supported oral prosthesis were included. Results: Twenty-two publications were included (230 patients, 615 implants). The overall implant failure rate was 13.9% (85/610). In patients with oral squamous cell carcinoma (OSCC) the failure rate was 90.6% (29/32), but none of these implants lost osseointegration; instead, the implants were removed together with the tumor. One study presented a very high implant failure rate, 76.4% (42/55), in patients with “active lichen planus”, with all implants failing between 7–16 weeks after implant placement, and its conflicting and incongruent results are discussed in detail. There was a statistically significant difference between the failure rates in implants installed in different jaws (maxilla/mandible) and when implants of different surfaces were used (turned/moderately rough), but not between patients with reticular or erosive OLP types, or between male and female patients. If OSCC patients and the cases of the latter study are not considered, then the failure rate becomes very low (2.7%, 14/523). The time between implant placement and failure was 25.4 ± 32.6 months (range 1–112). The mean ± SD follow-up was 58.9 ± 26.7 months (1–180). Conclusions: When the results of the one study with a very high failure rate and of the cases that developed OSCC are not considered, the dental implant failure rate in OLP patients was 2.7% after a follow-up of approximately five years. Recommendations are given when treating OLP patients with dental implants. Full article
(This article belongs to the Special Issue Dental Implants and Biomaterials Innovations)
Show Figures

Figure 1

Back to TopTop