Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

16 pages, 304 KiB  
Article
Limiting Distributions of a Non-Homogeneous Markov System in a Stochastic Environment in Continuous Time
by P. -C. G. Vassiliou
Mathematics 2022, 10(8), 1214; https://doi.org/10.3390/math10081214 - 07 Apr 2022
Cited by 2 | Viewed by 1600
Abstract
The stochastic process non-homogeneous Markov system in a stochastic environment in continuous time (S-NHMSC) is introduced in the present paper. The ordinary non-homogeneous Markov process is a very special case of an S-NHMSC. I studied the expected population structure of the S-NHMSC, the [...] Read more.
The stochastic process non-homogeneous Markov system in a stochastic environment in continuous time (S-NHMSC) is introduced in the present paper. The ordinary non-homogeneous Markov process is a very special case of an S-NHMSC. I studied the expected population structure of the S-NHMSC, the first central classical problem of finding the conditions under which the asymptotic behavior of the expected population structure exists and the second central problem of finding which expected relative population structures are possible limiting ones, provided that the limiting vector of input probabilities into the population is controlled. Finally, the rate of convergence was studied. Full article
28 pages, 396 KiB  
Article
On Numerical Approximations of the Koopman Operator
by Igor Mezić
Mathematics 2022, 10(7), 1180; https://doi.org/10.3390/math10071180 - 05 Apr 2022
Cited by 10 | Viewed by 3061
Abstract
We study numerical approaches to computation of spectral properties of composition operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized Laplace Analysis. We cast the Dynamic Mode Decomposition-type methods in the context of Finite Section theory of infinite dimensional [...] Read more.
We study numerical approaches to computation of spectral properties of composition operators. We provide a characterization of Koopman Modes in Banach spaces using Generalized Laplace Analysis. We cast the Dynamic Mode Decomposition-type methods in the context of Finite Section theory of infinite dimensional operators, and provide an example of a mixing map for which the finite section method fails. Under assumptions on the underlying dynamics, we provide the first result on the convergence rate under sample size increase in the finite-section approximation. We study the error in the Krylov subspace version of the finite section method and prove convergence in pseudospectral sense for operators with pure point spectrum. Since Krylov sequence-based approximations can mitigate the curse of dimensionality, this result indicates that they may also have low spectral error without an exponential-in-dimension increase in the number of functions needed. Full article
(This article belongs to the Special Issue Dynamical Systems and Operator Theory)
21 pages, 4051 KiB  
Article
MHD Mixed Convection Hybrid Nanofluids Flow over a Permeable Moving Inclined Flat Plate in the Presence of Thermophoretic and Radiative Heat Flux Effects
by Umair Khan, Iskandar Waini, Aurang Zaib, Anuar Ishak and Ioan Pop
Mathematics 2022, 10(7), 1164; https://doi.org/10.3390/math10071164 - 03 Apr 2022
Cited by 14 | Viewed by 2077
Abstract
Recent nanotech advancements have created a tremendous platform for the development of a superior ultrahigh performance coolant referred to as nanofluid for several industrial and engineering technologies. In this research, the impact of thermophoretic and viscous dissipation on the radiative mixed convective flow [...] Read more.
Recent nanotech advancements have created a tremendous platform for the development of a superior ultrahigh performance coolant referred to as nanofluid for several industrial and engineering technologies. In this research, the impact of thermophoretic and viscous dissipation on the radiative mixed convective flow comprising hybrid nanofluid through an inclined permeable moving flat plate with a magnetic field is examined numerically. A model of non-linear differential equations is derived based on some realistic assumptions and tackled numerically using the bvp4c technique. The impact of the specific set of distinguished parameters on the velocity profiles, shear stress, temperature distribution profiles, heat transfer, concentration distribution profile, and mass transfer for the two dissimilar branch solutions are discussed in detail. In addition, it has been discovered that double solutions exist in the case of an opposing flow, while a single solution is observed in the case of an assisting flow. The temperature distribution profile escalates with the radiation parameter, while decelerating the velocity and concentration profiles. Full article
(This article belongs to the Topic Engineering Mathematics)
Show Figures

Figure 1

25 pages, 402 KiB  
Article
Bounds on the Number of Maximal Subgroups of Finite Groups: Applications
by Adolfo Ballester-Bolinches, Ramón Esteban-Romero and Paz Jiménez-Seral
Mathematics 2022, 10(7), 1153; https://doi.org/10.3390/math10071153 - 02 Apr 2022
Cited by 3 | Viewed by 1973
Abstract
The determination of bounds for the number of maximal subgroups of a given index in a finite group is relevant to estimate the number of random elements needed to generate a group with a given probability. In this paper, we obtain new bounds [...] Read more.
The determination of bounds for the number of maximal subgroups of a given index in a finite group is relevant to estimate the number of random elements needed to generate a group with a given probability. In this paper, we obtain new bounds for the number of maximal subgroups of a given index in a finite group and we pin-point the universal constants that appear in some results in the literature related to the number of maximal subgroups of a finite group with a given index. This allows us to compare properly our bounds with some of the known bounds. Full article
(This article belongs to the Special Issue Group Theory and Related Topics)
12 pages, 3181 KiB  
Article
A Dynamic Mechanistic Model of Perceptual Binding
by Pavel Kraikivski
Mathematics 2022, 10(7), 1135; https://doi.org/10.3390/math10071135 - 01 Apr 2022
Cited by 5 | Viewed by 1823
Abstract
The brain’s ability to create a unified conscious representation of an object by integrating information from multiple perception pathways is called perceptual binding. Binding is crucial for normal cognitive function. Some perceptual binding errors and disorders have been linked to certain neurological conditions, [...] Read more.
The brain’s ability to create a unified conscious representation of an object by integrating information from multiple perception pathways is called perceptual binding. Binding is crucial for normal cognitive function. Some perceptual binding errors and disorders have been linked to certain neurological conditions, brain lesions, and conditions that give rise to illusory conjunctions. However, the mechanism of perceptual binding remains elusive. Here, I present a computational model of binding using two sets of coupled oscillatory processes that are assumed to occur in response to two different percepts. I use the model to study the dynamic behavior of coupled processes to characterize how these processes can modulate each other and reach a temporal synchrony. I identify different oscillatory dynamic regimes that depend on coupling mechanisms and parameter values. The model can also discriminate different combinations of initial inputs that are set by initial states of coupled processes. Decoding brain signals that are formed through perceptual binding is a challenging task, but my modeling results demonstrate how crosstalk between two systems of processes can possibly modulate their outputs. Therefore, my mechanistic model can help one gain a better understanding of how crosstalk between perception pathways can affect the dynamic behavior of the systems that involve perceptual binding. Full article
Show Figures

Figure 1

20 pages, 6612 KiB  
Article
Proving Feasibility of a Docking Mission: A Contractor Programming Approach
by Auguste Bourgois, Simon Rohou, Luc Jaulin and Andreas Rauh
Mathematics 2022, 10(7), 1130; https://doi.org/10.3390/math10071130 - 01 Apr 2022
Cited by 1 | Viewed by 1783
Abstract
Recent advances in computational power, algorithms, and sensors allow robots to perform complex and dangerous tasks, such as autonomous missions in space or underwater. Given the high operational costs, simulations are run beforehand to predict the possible outcomes of a mission. However, this [...] Read more.
Recent advances in computational power, algorithms, and sensors allow robots to perform complex and dangerous tasks, such as autonomous missions in space or underwater. Given the high operational costs, simulations are run beforehand to predict the possible outcomes of a mission. However, this approach is limited as it is based on parameter space discretization and therefore cannot be considered a proof of feasibility. To overcome this limitation, set-membership methods based on interval analysis, guaranteed integration, and contractor programming have proven their efficiency. Guaranteed integration algorithms can predict the possible trajectories of a system initialized in a given set in the form of tubes of trajectories. The contractor programming consists in removing the trajectories violating predefined constraints from a system’s tube of possible trajectories. Our contribution consists in merging both approaches to allow for the usage of differential constraints in a contractor programming framework. We illustrate our method through examples related to robotics. We also released an open-source implementation of our algorithm in a unified library for tubes, allowing one to combine it with other constraints and increase the number of possible applications. Full article
(This article belongs to the Special Issue Set-Based Methods for Differential Equations and Applications)
Show Figures

Figure 1

11 pages, 1223 KiB  
Article
Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories
by Mahmure Avey, Nicholas Fantuzzi and Abdullah Sofiyev
Mathematics 2022, 10(7), 1081; https://doi.org/10.3390/math10071081 - 28 Mar 2022
Cited by 26 | Viewed by 1973
Abstract
Revolutionary advances in technology have led to the use of functionally graded nanocomposite structural elements that operate at high temperatures and whose properties depend on position, such as cylindrical shells designed as load-bearing elements. These advances in technology require new mathematical modeling and [...] Read more.
Revolutionary advances in technology have led to the use of functionally graded nanocomposite structural elements that operate at high temperatures and whose properties depend on position, such as cylindrical shells designed as load-bearing elements. These advances in technology require new mathematical modeling and updated numerical calculations to be performed using improved theories at design time to reliably apply such elements. The main goal of this study is to model, mathematically and within an analytical solution, the thermoelastic stability problem of composite cylinders reinforced by carbon nanotubes (CNTs) under a uniform thermal loading within the shear deformation theory (ST). The influence of transverse shear deformations is considered when forming the fundamental relations of CNT-patterned cylindrical shells and the basic partial differential equations (PDEs) are derived within the modified Donnell-type shell theory. The PDEs are solved by the Galerkin method, and the formula is found for the eigenvalue (critical temperature) of the functionally graded nanocomposite cylindrical shells. The influences of CNT patterns, volume fraction, and geometric parameters on the critical temperature within the ST are estimated by comparing the results within classical theory (CT). Full article
Show Figures

Figure 1

18 pages, 4281 KiB  
Article
Adaptive Fuzzy Neural Network Harmonic Control with a Super-Twisting Sliding Mode Approach
by Qi Pan, Xiangguo Li and Juntao Fei
Mathematics 2022, 10(7), 1063; https://doi.org/10.3390/math10071063 - 25 Mar 2022
Cited by 4 | Viewed by 1893
Abstract
This paper designed an adaptive super-twisting sliding mode control (STSMC) scheme based on an output feedback fuzzy neural network (OFFNN) for an active power filter (APF), aiming at tracking compensation current quickly and precisely, and solving the harmonic current problem in the electrical [...] Read more.
This paper designed an adaptive super-twisting sliding mode control (STSMC) scheme based on an output feedback fuzzy neural network (OFFNN) for an active power filter (APF), aiming at tracking compensation current quickly and precisely, and solving the harmonic current problem in the electrical grid. With the use of OFFNN approximator, the proposed controller has the characteristic of full regulation and high approximation accuracy, where the parameters of OFFNN can be adjusted to the optimal values adaptively, thereby increasing the versatility of the control method. Moreover, due to an added signal feedback loop, the controller can obtain more information to track the state variable faster and more correctly. Simulations studies are given to demonstrate the performance of the proposed controller in the harmonic suppression, and verify its better steady-state and dynamic performance. Full article
(This article belongs to the Special Issue Advances in Intelligent Control)
Show Figures

Figure 1

42 pages, 78475 KiB  
Article
Modified Remora Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation
by Qingxin Liu, Ni Li, Heming Jia, Qi Qi and Laith Abualigah
Mathematics 2022, 10(7), 1014; https://doi.org/10.3390/math10071014 - 22 Mar 2022
Cited by 46 | Viewed by 3298
Abstract
Image segmentation is a key stage in image processing because it simplifies the representation of the image and facilitates subsequent analysis. The multi-level thresholding image segmentation technique is considered one of the most popular methods because it is efficient and straightforward. Many relative [...] Read more.
Image segmentation is a key stage in image processing because it simplifies the representation of the image and facilitates subsequent analysis. The multi-level thresholding image segmentation technique is considered one of the most popular methods because it is efficient and straightforward. Many relative works use meta-heuristic algorithms (MAs) to determine threshold values, but they have issues such as poor convergence accuracy and stagnation into local optimal solutions. Therefore, to alleviate these shortcomings, in this paper, we present a modified remora optimization algorithm (MROA) for global optimization and image segmentation tasks. We used Brownian motion to promote the exploration ability of ROA and provide a greater opportunity to find the optimal solution. Second, lens opposition-based learning is introduced to enhance the ability of search agents to jump out of the local optimal solution. To substantiate the performance of MROA, we first used 23 benchmark functions to evaluate the performance. We compared it with seven well-known algorithms regarding optimization accuracy, convergence speed, and significant difference. Subsequently, we tested the segmentation quality of MORA on eight grayscale images with cross-entropy as the objective function. The experimental metrics include peak signal-to-noise ratio (PSNR), structure similarity (SSIM), and feature similarity (FSIM). A series of experimental results have proved that the MROA has significant advantages among the compared algorithms. Consequently, the proposed MROA is a promising method for global optimization problems and image segmentation. Full article
Show Figures

Figure 1

16 pages, 490 KiB  
Article
A Modified Grey Wolf Optimization Algorithm for an Intrusion Detection System
by Abdullah Alzaqebah, Ibrahim Aljarah, Omar Al-Kadi and Robertas Damaševičius
Mathematics 2022, 10(6), 999; https://doi.org/10.3390/math10060999 - 21 Mar 2022
Cited by 51 | Viewed by 4791
Abstract
Cyber-attacks and unauthorized application usage have increased due to the extensive use of Internet services and applications over computer networks, posing a threat to the service’s availability and consumers’ privacy. A network Intrusion Detection System (IDS) aims to detect aberrant traffic behavior that [...] Read more.
Cyber-attacks and unauthorized application usage have increased due to the extensive use of Internet services and applications over computer networks, posing a threat to the service’s availability and consumers’ privacy. A network Intrusion Detection System (IDS) aims to detect aberrant traffic behavior that firewalls cannot detect. In IDSs, dimension reduction using the feature selection strategy has been shown to be more efficient. By reducing the data dimension and eliminating irrelevant and noisy data, several bio-inspired algorithms have been employed to improve the performance of an IDS. This paper discusses a modified bio-inspired algorithm, which is the Grey Wolf Optimization algorithm (GWO), that enhances the efficacy of the IDS in detecting both normal and anomalous traffic in the network. The main improvements cover the smart initialization phase that combines the filter and wrapper approaches to ensure that the informative features will be included in early iterations. In addition, we adopted a high-speed classification method, the Extreme Learning Machine (ELM), and used the modified GWO to tune the ELM’s parameters. The proposed technique was tested against various meta-heuristic algorithms using the UNSWNB-15 dataset. Because the generic attack is the most common attack type in the dataset, the primary goal of this paper was to detect generic attacks in network traffic. The proposed model outperformed other methods in minimizing the crossover error rate and false positive rate to less than 30%. Furthermore, it obtained the best results with 81%, 78%, and 84% for the accuracy, F1-score, and G-mean measures, respectively. Full article
(This article belongs to the Section Mathematics and Computer Science)
Show Figures

Figure 1

11 pages, 1242 KiB  
Article
Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation
by Anjan Biswas, Trevor Berkemeyer, Salam Khan, Luminita Moraru, Yakup Yıldırım and Hashim M. Alshehri
Mathematics 2022, 10(6), 987; https://doi.org/10.3390/math10060987 - 18 Mar 2022
Cited by 9 | Viewed by 2326
Abstract
This work analytically recovers the highly dispersive bright 1–soliton solution using for the perturbed complex Ginzburg–Landau equation, which is studied with three forms of nonlinear refractive index structures. They are Kerr law, parabolic law, and polynomial law. The perturbation terms appear with maximum [...] Read more.
This work analytically recovers the highly dispersive bright 1–soliton solution using for the perturbed complex Ginzburg–Landau equation, which is studied with three forms of nonlinear refractive index structures. They are Kerr law, parabolic law, and polynomial law. The perturbation terms appear with maximum allowable intensity, also known as full nonlinearity. The semi-inverse variational principle makes this retrieval possible. The amplitude–width relation is obtained by solving a cubic polynomial equation using Cardano’s approach. The parameter constraints for the existence of such solitons are also enumerated. Full article
Show Figures

Figure 1

21 pages, 4688 KiB  
Article
Evaluation of sEMG Signal Features and Segmentation Parameters for Limb Movement Prediction Using a Feedforward Neural Network
by David Leserri, Nils Grimmelsmann, Malte Mechtenberg, Hanno Gerd Meyer and Axel Schneider
Mathematics 2022, 10(6), 932; https://doi.org/10.3390/math10060932 - 15 Mar 2022
Cited by 3 | Viewed by 2308
Abstract
Limb movement prediction based on surface electromyography (sEMG) for the control of wearable robots, such as active orthoses and exoskeletons, is a promising approach since it provides an intuitive control interface for the user. Further, sEMG signals contain early information about the onset [...] Read more.
Limb movement prediction based on surface electromyography (sEMG) for the control of wearable robots, such as active orthoses and exoskeletons, is a promising approach since it provides an intuitive control interface for the user. Further, sEMG signals contain early information about the onset and course of limb movements for feedback control. Recent studies have proposed machine learning-based modeling approaches for limb movement prediction using sEMG signals, which do not necessarily require domain knowledge of the underlying physiological system and its parameters. However, there is limited information on which features of the measured sEMG signals provide the best prediction accuracy of machine learning models trained with these data. In this work, the accuracy of elbow joint movement prediction based on sEMG data using a simple feedforward neural network after training with different single- and multi-feature sets and data segmentation parameters was compared. It was shown that certain combinations of time-domain and frequency-domain features, as well as segmentation parameters of sEMG data, improve the prediction accuracy of the neural network as compared to the use of a standard feature set from the literature. Full article
(This article belongs to the Special Issue Machine Learning for Technical Systems)
Show Figures

Figure 1

21 pages, 365 KiB  
Article
Riemann–Hilbert Problems and Soliton Solutions of Type (λ, λ) Reduced Nonlocal Integrable mKdV Hierarchies
by Wen-Xiu Ma
Mathematics 2022, 10(6), 870; https://doi.org/10.3390/math10060870 - 09 Mar 2022
Cited by 47 | Viewed by 2443
Abstract
Reduced nonlocal matrix integrable modified Korteweg–de Vries (mKdV) hierarchies are presented via taking two transpose-type group reductions in the matrix Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems. One reduction is local, which replaces the spectral parameter λ with its complex conjugate λ, and the [...] Read more.
Reduced nonlocal matrix integrable modified Korteweg–de Vries (mKdV) hierarchies are presented via taking two transpose-type group reductions in the matrix Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems. One reduction is local, which replaces the spectral parameter λ with its complex conjugate λ, and the other one is nonlocal, which replaces the spectral parameter λ with its negative complex conjugate λ. Riemann–Hilbert problems and thus inverse scattering transforms are formulated from the reduced matrix spectral problems. In view of the specific distribution of eigenvalues and adjoint eigenvalues, soliton solutions are constructed from the reflectionless Riemann–Hilbert problems. Full article
13 pages, 1455 KiB  
Article
A System with Two Spare Units, Two Repair Facilities, and Two Types of Repairers
by Vahid Andalib and Jyotirmoy Sarkar
Mathematics 2022, 10(6), 852; https://doi.org/10.3390/math10060852 - 08 Mar 2022
Cited by 17 | Viewed by 2281
Abstract
Assuming exponential lifetime and repair time distributions, we study the limiting availability A as well as the per unit time-limiting profit ω of a one-unit system having two identical, cold standby spare units using semi-Markov processes. The failed unit is repaired either [...] Read more.
Assuming exponential lifetime and repair time distributions, we study the limiting availability A as well as the per unit time-limiting profit ω of a one-unit system having two identical, cold standby spare units using semi-Markov processes. The failed unit is repaired either by an in-house repairer within an exponential patience time T or by an external expert who works faster but charges more. When there are two repair facilities, we allow the regular repairer to begin repair or to continue repair beyond T if the expert is busy. Two models arise accordingly as the expert repairs one or all failed units during each visit. We show that (1) adding a second spare to a one-unit system already backed by a spare raises A as well as ω; (2) thereafter, adding a second repair facility improves both criteria further. Finally, we determine whether the expert must repair one or all failed units to maximize these criteria and fulfill the maintenance management objectives better than previously studied models. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation II)
Show Figures

Figure 1

14 pages, 268 KiB  
Article
Intermediate-Task Transfer Learning with BERT for Sarcasm Detection
by Edoardo Savini and Cornelia Caragea
Mathematics 2022, 10(5), 844; https://doi.org/10.3390/math10050844 - 07 Mar 2022
Cited by 31 | Viewed by 4675
Abstract
Sarcasm detection plays an important role in natural language processing as it can impact the performance of many applications, including sentiment analysis, opinion mining, and stance detection. Despite substantial progress on sarcasm detection, the research results are scattered across datasets and studies. In [...] Read more.
Sarcasm detection plays an important role in natural language processing as it can impact the performance of many applications, including sentiment analysis, opinion mining, and stance detection. Despite substantial progress on sarcasm detection, the research results are scattered across datasets and studies. In this paper, we survey the current state-of-the-art and present strong baselines for sarcasm detection based on BERT pre-trained language models. We further improve our BERT models by fine-tuning them on related intermediate tasks before fine-tuning them on our target task. Specifically, relying on the correlation between sarcasm and (implied negative) sentiment and emotions, we explore a transfer learning framework that uses sentiment classification and emotion detection as individual intermediate tasks to infuse knowledge into the target task of sarcasm detection. Experimental results on three datasets that have different characteristics show that the BERT-based models outperform many previous models. Full article
Show Figures

Figure 1

9 pages, 1719 KiB  
Article
The Impact of the Wiener Process on the Analytical Solutions of the Stochastic (2+1)-Dimensional Breaking Soliton Equation by Using Tanh–Coth Method
by Farah M. Al-Askar, Wael W. Mohammed, Abeer M. Albalahi and Mahmoud El-Morshedy
Mathematics 2022, 10(5), 817; https://doi.org/10.3390/math10050817 - 04 Mar 2022
Cited by 30 | Viewed by 2062
Abstract
The stochastic (2+1)-dimensional breaking soliton equation (SBSE) is considered in this article, which is forced by the Wiener process. To attain the analytical stochastic solutions such as the polynomials, hyperbolic and trigonometric functions of the SBSE, we use the tanh–coth method. The results [...] Read more.
The stochastic (2+1)-dimensional breaking soliton equation (SBSE) is considered in this article, which is forced by the Wiener process. To attain the analytical stochastic solutions such as the polynomials, hyperbolic and trigonometric functions of the SBSE, we use the tanh–coth method. The results provided here extended earlier results. In addition, we utilize Matlab tools to plot 2D and 3D graphs of analytical stochastic solutions derived here to show the effect of the Wiener process on the solutions of the breaking soliton equation. Full article
(This article belongs to the Special Issue Recent Advances in Differential Equations and Applications)
Show Figures

Figure 1

19 pages, 4041 KiB  
Article
SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation
by Syed Furqan Qadri, Linlin Shen, Mubashir Ahmad, Salman Qadri, Syeda Shamaila Zareen and Muhammad Azeem Akbar
Mathematics 2022, 10(5), 796; https://doi.org/10.3390/math10050796 - 02 Mar 2022
Cited by 36 | Viewed by 4113
Abstract
Precise vertebrae segmentation is essential for the image-related analysis of spine pathologies such as vertebral compression fractures and other abnormalities, as well as for clinical diagnostic treatment and surgical planning. An automatic and objective system for vertebra segmentation is required, but its development [...] Read more.
Precise vertebrae segmentation is essential for the image-related analysis of spine pathologies such as vertebral compression fractures and other abnormalities, as well as for clinical diagnostic treatment and surgical planning. An automatic and objective system for vertebra segmentation is required, but its development is likely to run into difficulties such as low segmentation accuracy and the requirement of prior knowledge or human intervention. Recently, vertebral segmentation methods have focused on deep learning-based techniques. To mitigate the challenges involved, we propose deep learning primitives and stacked Sparse autoencoder-based patch classification modeling for Vertebrae segmentation (SVseg) from Computed Tomography (CT) images. After data preprocessing, we extract overlapping patches from CT images as input to train the model. The stacked sparse autoencoder learns high-level features from unlabeled image patches in an unsupervised way. Furthermore, we employ supervised learning to refine the feature representation to improve the discriminability of learned features. These high-level features are fed into a logistic regression classifier to fine-tune the model. A sigmoid classifier is added to the network to discriminate the vertebrae patches from non-vertebrae patches by selecting the class with the highest probabilities. We validated our proposed SVseg model on the publicly available MICCAI Computational Spine Imaging (CSI) dataset. After configuration optimization, our proposed SVseg model achieved impressive performance, with 87.39% in Dice Similarity Coefficient (DSC), 77.60% in Jaccard Similarity Coefficient (JSC), 91.53% in precision (PRE), and 90.88% in sensitivity (SEN). The experimental results demonstrated the method’s efficiency and significant potential for diagnosing and treating clinical spinal diseases. Full article
Show Figures

Figure 1

18 pages, 786 KiB  
Article
How Many Fractional Derivatives Are There?
by Duarte Valério, Manuel D. Ortigueira and António M. Lopes
Mathematics 2022, 10(5), 737; https://doi.org/10.3390/math10050737 - 25 Feb 2022
Cited by 22 | Viewed by 3358
Abstract
In this paper, we introduce a unified fractional derivative, defined by two parameters (order and asymmetry). From this, all the interesting derivatives can be obtained. We study the one-sided derivatives and show that most known derivatives are particular cases. We consider also [...] Read more.
In this paper, we introduce a unified fractional derivative, defined by two parameters (order and asymmetry). From this, all the interesting derivatives can be obtained. We study the one-sided derivatives and show that most known derivatives are particular cases. We consider also some myths of Fractional Calculus and false fractional derivatives. The results are expected to contribute to limit the appearance of derivatives that differ from existing ones just because they are defined on distinct domains, and to prevent the ambiguous use of the concept of fractional derivative. Full article
Show Figures

Figure 1

17 pages, 1272 KiB  
Article
Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel
by Meshari Alesemi, Naveed Iqbal and Thongchai Botmart
Mathematics 2022, 10(4), 615; https://doi.org/10.3390/math10040615 - 17 Feb 2022
Cited by 29 | Viewed by 2065
Abstract
This article presents a homotopy perturbation transform method and a variational iterative transform method for analyzing the fractional-order non-linear system of the unsteady flow of a polytropic gas. In this method, the Yang transform is combined with the homotopy perturbation transformation method and [...] Read more.
This article presents a homotopy perturbation transform method and a variational iterative transform method for analyzing the fractional-order non-linear system of the unsteady flow of a polytropic gas. In this method, the Yang transform is combined with the homotopy perturbation transformation method and the variational iterative transformation method in the sense of Caputo–Fabrizio. A numerical simulation was carried out to verify that the suggested methodologies are accurate and reliable, and the results are revealed using graphs and tables. Comparing the analytical and actual solutions demonstrates that the proposed approaches are effective and efficient in investigating complicated non-linear models. Furthermore, the proposed methodologies control and manipulate the achieved numerical solutions in a very useful way, and this provides us with a simple process to adjust and control the convergence regions of the series solution. Full article
Show Figures

Figure 1

17 pages, 3315 KiB  
Article
PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data
by Xue-Bo Jin, Wen-Tao Gong, Jian-Lei Kong, Yu-Ting Bai and Ting-Li Su
Mathematics 2022, 10(4), 610; https://doi.org/10.3390/math10040610 - 16 Feb 2022
Cited by 85 | Viewed by 10472
Abstract
Prediction based on time series has a wide range of applications. Due to the complex nonlinear and random distribution of time series data, the performance of learning prediction models can be reduced by the modeling bias or overfitting. This paper proposes a novel [...] Read more.
Prediction based on time series has a wide range of applications. Due to the complex nonlinear and random distribution of time series data, the performance of learning prediction models can be reduced by the modeling bias or overfitting. This paper proposes a novel planar flow-based variational auto-encoder prediction model (PFVAE), which uses the long- and short-term memory network (LSTM) as the auto-encoder and designs the variational auto-encoder (VAE) as a time series data predictor to overcome the noise effects. In addition, the internal structure of VAE is transformed using planar flow, which enables it to learn and fit the nonlinearity of time series data and improve the dynamic adaptability of the network. The prediction experiments verify that the proposed model is superior to other models regarding prediction accuracy and proves it is effective for predicting time series data. Full article
(This article belongs to the Special Issue Mathematical Method and Application of Machine Learning)
Show Figures

Figure 1

24 pages, 3136 KiB  
Article
Free Vibration of FG-CNTRCs Nano-Plates/Shells with Temperature-Dependent Properties
by Ammar Melaibari, Ahmed Amine Daikh, Muhammad Basha, Ahmed W. Abdalla, Ramzi Othman, Khalid H. Almitani, Mostafa A. Hamed, Alaa Abdelrahman and Mohamed A. Eltaher
Mathematics 2022, 10(4), 583; https://doi.org/10.3390/math10040583 - 13 Feb 2022
Cited by 39 | Viewed by 2120
Abstract
This article presents a mathematical continuum model to analyze the free vibration response of cross-ply carbon-nanotube-reinforced composite laminated nanoplates and nanoshells, including microstructure and length scale effects. Different shell geometries, such as plate (infinite radii), spherical, cylindrical, hyperbolic-paraboloid and elliptical-paraboloid are considered in [...] Read more.
This article presents a mathematical continuum model to analyze the free vibration response of cross-ply carbon-nanotube-reinforced composite laminated nanoplates and nanoshells, including microstructure and length scale effects. Different shell geometries, such as plate (infinite radii), spherical, cylindrical, hyperbolic-paraboloid and elliptical-paraboloid are considered in the analysis. By employing Hamilton’s variational principle, the equations of motion are derived based on hyperbolic sine function shear deformation theory. Then, the derived equations are solved analytically using the Galerkin approach. Two types of material distribution are proposed. Higher-order nonlocal strain gradient theory is employed to capture influences of shear deformation, length scale parameter (nonlocal) and material/microstructurescale parameter (gradient). Temperature-dependent material properties are considered. The validation of the proposed mathematical model is presented. Detailed parametric analyses are carried out to highlight the effects of the carbon nanotubes (CNT) distribution pattern, the thickness stretching, the geometry of the plate/shell, the boundary conditions, the total number of layers, the length scale and the material scale parameters, on the vibrational frequencies of CNTRC laminated nanoplates and nanoshells. Full article
(This article belongs to the Topic Dynamical Systems: Theory and Applications)
Show Figures

Figure 1

19 pages, 5676 KiB  
Article
Enhanced Convolutional Neural Network Model for Cassava Leaf Disease Identification and Classification
by Umesh Kumar Lilhore, Agbotiname Lucky Imoize, Cheng-Chi Lee, Sarita Simaiya, Subhendu Kumar Pani, Nitin Goyal, Arun Kumar and Chun-Ta Li
Mathematics 2022, 10(4), 580; https://doi.org/10.3390/math10040580 - 13 Feb 2022
Cited by 35 | Viewed by 4304
Abstract
Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers and it can survive in a brutal environment. It is a significant source of carbohydrates in African countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall [...] Read more.
Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers and it can survive in a brutal environment. It is a significant source of carbohydrates in African countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall production and reducing farmers’ income. The existing Cassava disease research encounters several challenges, such as poor detection rate, higher processing time, and poor accuracy. This research provides a comprehensive learning strategy for real-time Cassava leaf disease identification based on enhanced CNN models (ECNN). The existing Standard CNN model utilizes extensive data processing features, increasing the computational overhead. A depth-wise separable convolution layer is utilized to resolve CNN issues in the proposed ECNN model. This feature minimizes the feature count and computational overhead. The proposed ECNN model utilizes a distinct block processing feature to process the imbalanced images. To resolve the color segregation issue, the proposed ECNN model uses a Gamma correction feature. To decrease the variable selection process and increase the computational efficiency, the proposed ECNN model uses global average election polling with batch normalization. An experimental analysis is performed over an online Cassava image dataset containing 6256 images of Cassava leaves with five disease classes. The dataset classes are as follows: class 0: “Cassava Bacterial Blight (CBB)”; class 1: “Cassava Brown Streak Disease (CBSD)”; class 2: “Cassava Green Mottle (CGM)”; class 3: “Cassava Mosaic Disease (CMD)”; and class 4: “Healthy”. Various performance measuring parameters, i.e., precision, recall, measure, and accuracy, are calculated for existing Standard CNN and the proposed ECNN model. The proposed ECNN classifier significantly outperforms and achieves 99.3% accuracy for the balanced dataset. The test findings prove that applying a balanced database of images improves classification performance. Full article
Show Figures

Figure 1

20 pages, 4930 KiB  
Article
Forecasting of Electrical Energy Consumption in Slovakia
by Michal Pavlicko, Mária Vojteková and Oľga Blažeková
Mathematics 2022, 10(4), 577; https://doi.org/10.3390/math10040577 - 12 Feb 2022
Cited by 21 | Viewed by 3135
Abstract
Prediction of electricity energy consumption plays a crucial role in the electric power industry. Accurate forecasting is essential for electricity supply policies. A characteristic feature of electrical energy is the need to ensure a constant balance between consumption and electricity production, whereas electricity [...] Read more.
Prediction of electricity energy consumption plays a crucial role in the electric power industry. Accurate forecasting is essential for electricity supply policies. A characteristic feature of electrical energy is the need to ensure a constant balance between consumption and electricity production, whereas electricity cannot be stored in significant quantities, nor is it easy to transport. Electricity consumption generally has a stochastic behavior that makes it hard to predict. The main goal of this study is to propose the forecasting models to predict the maximum hourly electricity consumption per day that is more accurate than the official load prediction of the Slovak Distribution Company. Different models are proposed and compared. The first model group is based on the transverse set of Grey models and Nonlinear Grey Bernoulli models and the second approach is based on a multi-layer feed-forward back-propagation network. Moreover, a new potential hybrid model combining these different approaches is used to forecast the maximum hourly electricity consumption per day. Various performance metrics are adopted to evaluate the performance and effectiveness of models. All the proposed models achieved more accurate predictions than the official load prediction, while the hybrid model offered the best results according to performance metrics and supported the legitimacy of this research. Full article
(This article belongs to the Special Issue Statistical Data Modeling and Machine Learning with Applications II)
Show Figures

Figure 1

26 pages, 467 KiB  
Article
A Theoretical Analysis of a Fractional Multi-Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique
by Shahram Rezapour, Chernet Tuge Deressa, Azhar Hussain, Sina Etemad, Reny George and Bashir Ahmad
Mathematics 2022, 10(4), 568; https://doi.org/10.3390/math10040568 - 12 Feb 2022
Cited by 18 | Viewed by 1783
Abstract
Few studies have investigated the existence and uniqueness of solutions for fractional differential equations on star graphs until now. The published papers on the topic are based on the assumption of existence of one junction node and some boundary nodes as the origin [...] Read more.
Few studies have investigated the existence and uniqueness of solutions for fractional differential equations on star graphs until now. The published papers on the topic are based on the assumption of existence of one junction node and some boundary nodes as the origin on a star graph. These structures are special cases and do not cover more general non-star graph structures. In this paper, we state a labeling method for graph vertices, and then we prove the existence results for solutions to a new family of fractional boundary value problems (FBVPs) on the methylpropane graph. We design the chemical compound of the methylpropane graph with vertices specified by 0 or 1, and on every edge of the graph, we consider fractional differential equations. We prove the existence of solutions for the proposed FBVPs by means of the Krasnoselskii’s and Scheafer’s fixed point theorems, and further, we study the Ulam–Hyers type stability for the given multi-dimensional system. Finally, we provide an illustrative example to examine our results. Full article
(This article belongs to the Special Issue Fractional Calculus and Mathematical Applications)
Show Figures

Figure 1

18 pages, 1418 KiB  
Article
Data-Driven Maintenance Priority and Resilience Evaluation of Performance Loss in a Main Coolant System
by Hongyan Dui, Zhe Xu, Liwei Chen, Liudong Xing and Bin Liu
Mathematics 2022, 10(4), 563; https://doi.org/10.3390/math10040563 - 11 Feb 2022
Cited by 26 | Viewed by 1804
Abstract
The main coolant system (MCS) plays a vital role in the stability and reliability of a nuclear power plant. However, human errors and natural disasters may cause some reactor coolant system components to fail, resulting in severe consequences such as nuclear leakage. Therefore, [...] Read more.
The main coolant system (MCS) plays a vital role in the stability and reliability of a nuclear power plant. However, human errors and natural disasters may cause some reactor coolant system components to fail, resulting in severe consequences such as nuclear leakage. Therefore, it is crucial to perform a resilience analysis of the MCS, to effectively reduce and prevent losses. In this paper, a resilience importance measure (RIM) for performance loss is proposed to evaluate the performance of the MCS. Specifically, a loss importance measure (LIM) is first proposed to indicate the component maintenance priority of the MCS under different failure conditions. Based on the LIM, RIMs for single component failure and multiple component failures were developed to measure the recovery efficiency of the system performance. Finally, a case study was conducted to demonstrate the proposed resilience measure for system reliability. Results provide a valuable reference for increasing the system security of the MCS and choosing the appropriate total maintenance cost. Full article
Show Figures

Figure 1

26 pages, 422 KiB  
Article
Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus
by Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță and Mohamed S. Soliman
Mathematics 2022, 10(4), 534; https://doi.org/10.3390/math10040534 - 09 Feb 2022
Cited by 9 | Viewed by 2147
Abstract
In interval analysis, the fuzzy inclusion relation and the fuzzy order relation are two different concepts. Under the inclusion connection, convexity and non-convexity form a substantial link with various types of inequalities. Moreover, convex fuzzy-interval-valued functions are well known in convex theory because [...] Read more.
In interval analysis, the fuzzy inclusion relation and the fuzzy order relation are two different concepts. Under the inclusion connection, convexity and non-convexity form a substantial link with various types of inequalities. Moreover, convex fuzzy-interval-valued functions are well known in convex theory because they allow us to infer more exact inequalities than convex functions. Most likely, integral operators play significant roles to define different types of inequalities. In this paper, we have successfully introduced the Riemann–Liouville fractional integrals on coordinates via fuzzy-interval-valued functions (FIVFs). Then, with the help of these integrals, some fuzzy fractional Hermite–Hadamard-type integral inequalities are also derived for the introduced coordinated convex FIVFs via a fuzzy order relation (FOR). This FOR is defined by φ-cuts or level-wise by using the Kulish–Miranker order relation. Moreover, some related fuzzy fractional Hermite–Hadamard-type integral inequalities are also obtained for the product of two coordinated convex fuzzy-interval-valued functions. The main results of this paper are the generalization of several known results. Full article
(This article belongs to the Special Issue Fuzzy Sets and Soft Computing)
13 pages, 2859 KiB  
Article
Optimal Reinforcement Learning-Based Control Algorithm for a Class of Nonlinear Macroeconomic Systems
by Qing Ding, Hadi Jahanshahi, Ye Wang, Stelios Bekiros and Madini O. Alassafi
Mathematics 2022, 10(3), 499; https://doi.org/10.3390/math10030499 - 03 Feb 2022
Cited by 7 | Viewed by 1956
Abstract
Due to the vital role of financial systems in today’s sophisticated world, applying intelligent controllers through management strategies is of crucial importance. We propose to formulate the control problem of the macroeconomic system as an optimization problem and find optimal actions using a [...] Read more.
Due to the vital role of financial systems in today’s sophisticated world, applying intelligent controllers through management strategies is of crucial importance. We propose to formulate the control problem of the macroeconomic system as an optimization problem and find optimal actions using a reinforcement learning algorithm. Using the Q-learning algorithm, the best optimal action for the system is obtained, and the behavior of the system is controlled. We illustrate that it is possible to control the nonlinear dynamics of the macroeconomic systems using restricted actuation. The highly effective performance of the proposed controller for uncertain systems is demonstrated. The simulation results evidently confirm that the proposed controller satisfies the expected performance. In addition, the numerical simulations clearly confirm that even when we confined the control actions, the proposed controller effectively finds optimal actions for the nonlinear macroeconomic system. Full article
(This article belongs to the Special Issue Mathematics and Economic Modeling)
Show Figures

Figure 1

19 pages, 869 KiB  
Article
Variational Bayesian Inference in High-Dimensional Linear Mixed Models
by Jieyi Yi and Niansheng Tang
Mathematics 2022, 10(3), 463; https://doi.org/10.3390/math10030463 - 31 Jan 2022
Cited by 5 | Viewed by 3017
Abstract
In high-dimensional regression models, the Bayesian lasso with the Gaussian spike and slab priors is widely adopted to select variables and estimate unknown parameters. However, it involves large matrix computations in a standard Gibbs sampler. To solve this issue, the Skinny Gibbs sampler [...] Read more.
In high-dimensional regression models, the Bayesian lasso with the Gaussian spike and slab priors is widely adopted to select variables and estimate unknown parameters. However, it involves large matrix computations in a standard Gibbs sampler. To solve this issue, the Skinny Gibbs sampler is employed to draw observations required for Bayesian variable selection. However, when the sample size is much smaller than the number of variables, the computation is rather time-consuming. As an alternative to the Skinny Gibbs sampler, we develop a variational Bayesian approach to simultaneously select variables and estimate parameters in high-dimensional linear mixed models under the Gaussian spike and slab priors of population-specific fixed-effects regression coefficients, which are reformulated as a mixture of a normal distribution and an exponential distribution. The coordinate ascent algorithm, which can be implemented efficiently, is proposed to optimize the evidence lower bound. The Bayes factor, which can be computed with the path sampling technique, is presented to compare two competing models in the variational Bayesian framework. Simulation studies are conducted to assess the performance of the proposed variational Bayesian method. An empirical example is analyzed by the proposed methodologies. Full article
(This article belongs to the Special Issue Bayesian Inference and Modeling with Applications)
32 pages, 3431 KiB  
Article
An Enhanced Grey Wolf Optimizer with a Velocity-Aided Global Search Mechanism
by Farshad Rezaei, Hamid Reza Safavi, Mohamed Abd Elaziz, Shaker H. Ali El-Sappagh, Mohammed Azmi Al-Betar and Tamer Abuhmed
Mathematics 2022, 10(3), 351; https://doi.org/10.3390/math10030351 - 24 Jan 2022
Cited by 18 | Viewed by 5267
Abstract
This paper proposes a novel variant of the Grey Wolf Optimization (GWO) algorithm, named Velocity-Aided Grey Wolf Optimizer (VAGWO). The original GWO lacks a velocity term in its position-updating procedure, and this is the main factor weakening the exploration capability of this algorithm. [...] Read more.
This paper proposes a novel variant of the Grey Wolf Optimization (GWO) algorithm, named Velocity-Aided Grey Wolf Optimizer (VAGWO). The original GWO lacks a velocity term in its position-updating procedure, and this is the main factor weakening the exploration capability of this algorithm. In VAGWO, this term is carefully set and incorporated into the updating formula of the GWO. Furthermore, both the exploration and exploitation capabilities of the GWO are enhanced in VAGWO via stressing the enlargement of steps that each leading wolf takes towards the others in the early iterations while stressing the reduction in these steps when approaching the later iterations. The VAGWO is compared with a set of popular and newly proposed meta-heuristic optimization algorithms through its implementation on a set of 13 high-dimensional shifted standard benchmark functions as well as 10 complex composition functions derived from the CEC2017 test suite and three engineering problems. The complexity of the proposed algorithm is also evaluated against the original GWO. The results indicate that the VAGWO is a computationally efficient algorithm, generating highly accurate results when employed to optimize high-dimensional and complex problems. Full article
Show Figures

Figure 1

27 pages, 1067 KiB  
Article
Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM
by Ashwin Muniyappan, Balamuralitharan Sundarappan, Poongodi Manoharan, Mounir Hamdi, Kaamran Raahemifar, Sami Bourouis and Vijayakumar Varadarajan
Mathematics 2022, 10(3), 343; https://doi.org/10.3390/math10030343 - 24 Jan 2022
Cited by 46 | Viewed by 4469
Abstract
This paper deals with the mathematical modeling of the second wave of COVID-19 and verifies the current Omicron variant pandemic data in India. We also we discussed such as uniformly bounded of the system, Equilibrium analysis and basic reproduction number R0. [...] Read more.
This paper deals with the mathematical modeling of the second wave of COVID-19 and verifies the current Omicron variant pandemic data in India. We also we discussed such as uniformly bounded of the system, Equilibrium analysis and basic reproduction number R0. We calculated the analytic solutions by HPM (homotopy perturbation method) and used Mathematica 12 software for numerical analysis up to 8th order approximation. It checked the error values of the approximation while the system has residual error, absolute error and h curve initial derivation of square error at up to 8th order approximation. The basic reproduction number ranges between 0.8454 and 2.0317 to form numerical simulation, it helps to identify the whole system fluctuations. Finally, our proposed model validated (from real life data) the highly affected five states of COVID-19 and the Omicron variant. The algorithm guidelines are used for international arrivals, with Omicron variant cases updated by the Union Health Ministry in January 2022. Right now, the third wave is underway in India, and we conclude that it may peak by the end of May 2022. Full article
(This article belongs to the Special Issue Epidemic Models: Track and Control)
Show Figures

Figure 1

12 pages, 274 KiB  
Article
Chen Inequalities for Spacelike Submanifolds in Statistical Manifolds of Type Para-Kähler Space Forms
by Simona Decu and Stefan Haesen
Mathematics 2022, 10(3), 330; https://doi.org/10.3390/math10030330 - 21 Jan 2022
Cited by 7 | Viewed by 2367
Abstract
In this paper, we prove some inequalities between intrinsic and extrinsic curvature invariants, namely involving the Chen first invariant and the mean curvature of totally real and holomorphic spacelike submanifolds in statistical manifolds of type para-Kähler space forms. Furthermore, we investigate the equality [...] Read more.
In this paper, we prove some inequalities between intrinsic and extrinsic curvature invariants, namely involving the Chen first invariant and the mean curvature of totally real and holomorphic spacelike submanifolds in statistical manifolds of type para-Kähler space forms. Furthermore, we investigate the equality cases of these inequalities. As illustrations of the applications of the above inequalities, we consider a few examples. Full article
(This article belongs to the Special Issue Analytic and Geometric Inequalities: Theory and Applications)
15 pages, 731 KiB  
Article
Comparison of the Selected Methods Used for Solving the Ordinary Differential Equations and Their Systems
by Edyta Hetmaniok and Mariusz Pleszczyński
Mathematics 2022, 10(3), 306; https://doi.org/10.3390/math10030306 - 19 Jan 2022
Cited by 7 | Viewed by 2180
Abstract
Ordinary differential equations (ODEs), and the systems of such equations, are used for describing many essential physical phenomena. Therefore, the ability to efficiently solve such tasks is important and desired. The goal of this paper is to compare three methods devoted to solving [...] Read more.
Ordinary differential equations (ODEs), and the systems of such equations, are used for describing many essential physical phenomena. Therefore, the ability to efficiently solve such tasks is important and desired. The goal of this paper is to compare three methods devoted to solving ODEs and their systems, with respect to the quality of obtained solutions, as well as the speed and reliability of working. These approaches are the classical and often applied Runge–Kutta method of order 4 (RK4), the method developed on the ground of the Taylor series, the differential transformation method (DTM), and the routine available in the Mathematica software (Mat). Full article
(This article belongs to the Special Issue Applications of Symbolic and Soft Computations in Applied Sciences)
Show Figures

Figure 1

19 pages, 329 KiB  
Article
Applications of Solvable Lie Algebras to a Class of Third Order Equations
by María S. Bruzón, Rafael de la Rosa, María L. Gandarias and Rita Tracinà
Mathematics 2022, 10(2), 254; https://doi.org/10.3390/math10020254 - 14 Jan 2022
Cited by 2 | Viewed by 1447
Abstract
A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductors considering quantum effects—for [...] Read more.
A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductors considering quantum effects—for example, models for the transmission of electrical lines and quantum hydrodynamic models—are governed by third-order PDEs of this family. For this family, all point symmetries have been derived. These symmetries are used to determine group-invariant solutions from three-dimensional solvable subgroups of the complete symmetry group, which allow us to reduce the given PDE to a first-order nonlinear ordinary differential equation (ODE). Finally, exact solutions are obtained by solving the first-order nonlinear ODEs or by taking into account the Type-II hidden symmetries that appear in the reduced second-order ODEs. Full article
28 pages, 3306 KiB  
Article
Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm
by Xiaobing Yu, Xuejing Wu and Wenguan Luo
Mathematics 2022, 10(2), 183; https://doi.org/10.3390/math10020183 - 07 Jan 2022
Cited by 13 | Viewed by 1444
Abstract
As one of the most promising forms of renewable energy, solar energy is increasingly deployed. The simulation and control of photovoltaic (PV) systems requires identification of their parameters. A Hybrid Adaptive algorithm based on JAYA and Differential Evolution (HAJAYADE) is developed to identify [...] Read more.
As one of the most promising forms of renewable energy, solar energy is increasingly deployed. The simulation and control of photovoltaic (PV) systems requires identification of their parameters. A Hybrid Adaptive algorithm based on JAYA and Differential Evolution (HAJAYADE) is developed to identify these parameters accurately and reliably. The HAJAYADE algorithm consists of adaptive JAYA, adaptive DE, and the chaotic perturbation method. Two adaptive coefficients are introduced in adaptive JAYA to balance the local and global search. In adaptive DE, the Rank/Best/1 mutation operator is put forward to boost the exploration and maintain the exploitation. The chaotic perturbation method is applied to reinforce the local search further. The HAJAYADE algorithm is employed to address the parameter identification of PV systems through five test cases, and the eight latest meta-heuristic algorithms are its opponents. The mean RMSE values of the HAJAYADE algorithm from five test cases are 9.8602 × 10−4, 9.8294 × 10−4, 2.4251 × 10−3, 1.7298 × 10−3, and 1.6601 × 10−2. Consequently, HAJAYADE is proven to be an efficient and reliable algorithm and could be an alternative algorithm to identify the parameters of PV systems. Full article
(This article belongs to the Special Issue Applied Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 1154 KiB  
Article
Automatic Control for Time Delay Markov Jump Systems under Polytopic Uncertainties
by Khalid A. Alattas, Ardashir Mohammadzadeh, Saleh Mobayen, Hala M. Abo-Dief, Abdullah K. Alanazi, Mai The Vu and Arthur Chang
Mathematics 2022, 10(2), 187; https://doi.org/10.3390/math10020187 - 07 Jan 2022
Cited by 6 | Viewed by 1578
Abstract
The Markov jump systems (MJSs) are a special case of parametric switching system. However, we know that time delay inevitably exists in many practical systems, and is known as the main source of efficiency reduction, and even instability. In this paper, the stochastic [...] Read more.
The Markov jump systems (MJSs) are a special case of parametric switching system. However, we know that time delay inevitably exists in many practical systems, and is known as the main source of efficiency reduction, and even instability. In this paper, the stochastic stable control design is discussed for time delay MJSs. In this regard, first, the problem of modeling of MJSs and their stability analysis using Lyapunov-Krasovsky functions is studied. Then, a state-feedback controller (SFC) is designed and its stability is proved on the basis of the Lyapunov theorem and linear matrix inequalities (LMIs), in the presence of polytopic uncertainties and time delays. Finally, by various simulations, the accuracy and efficiency of the proposed methods for robust stabilization of MJSs are demonstrated. Full article
(This article belongs to the Special Issue Automatic Control and Soft Computing in Engineering)
Show Figures

Figure 1

18 pages, 2363 KiB  
Article
Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity
by Zai-Yin He, Abderrahmane Abbes, Hadi Jahanshahi, Naif D. Alotaibi and Ye Wang
Mathematics 2022, 10(2), 165; https://doi.org/10.3390/math10020165 - 06 Jan 2022
Cited by 141 | Viewed by 7164
Abstract
This research presents a new fractional-order discrete-time susceptible-infected-recovered (SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is examined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum Lyapunov exponent and the 0−1 test, it is verified that the [...] Read more.
This research presents a new fractional-order discrete-time susceptible-infected-recovered (SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is examined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum Lyapunov exponent and the 0−1 test, it is verified that the newly introduced fractional discrete SIR epidemic model vaccination with both commensurate and incommensurate fractional orders has chaotic behavior. The discrete fractional model gives more complex dynamics for incommensurate fractional orders compared to commensurate fractional orders. The reasonable range of commensurate fractional orders is between γ = 0.8712 and γ = 1, while the reasonable range of incommensurate fractional orders is between γ2 = 0.77 and γ2 = 1. Furthermore, the complexity analysis is performed using approximate entropy (ApEn) and C0 complexity to confirm the existence of chaos. Finally, simulations were carried out on MATLAB to verify the efficacy of the given findings. Full article
Show Figures

Figure 1

17 pages, 910 KiB  
Article
Analytical Solution of Stationary Coupled Thermoelasticity Problem for Inhomogeneous Structures
by Sergey A. Lurie, Dmitrii B. Volkov-Bogorodskii and Petr A. Belov
Mathematics 2022, 10(1), 90; https://doi.org/10.3390/math10010090 - 27 Dec 2021
Cited by 2 | Viewed by 2145
Abstract
A mathematical statement for the coupled stationary thermoelasticity is given on the basis of a variational approach and the contact boundary problem is formulated to consider inhomogeneous materials. The structure of general representation of the solution from the set of the auxiliary potentials [...] Read more.
A mathematical statement for the coupled stationary thermoelasticity is given on the basis of a variational approach and the contact boundary problem is formulated to consider inhomogeneous materials. The structure of general representation of the solution from the set of the auxiliary potentials is established. The potentials are analyzed depending on the parameters of the model, taking into account the restrictions associated with additional requirements for the positive definiteness of the potential energy density for the coupled problem in the one-dimensional case. The novelty of this work lies in the fact that it attempts to take into account the effects of higher order coupling between the gradients of the temperature fields and the gradients of the deformation fields. From a mathematical point of view, this leads to a change in the roots of the characteristic equation and affects the structure of the solution. Contact boundary value problems are formulated for modeling inhomogeneous materials and a solution for a layered structure is constructed. The analysis of the influence of the model parameters on the structure of the solution is given. The features of the distribution of mechanical and thermal fields in the region of phase contact with a change in the parameters, which are characteristic only for gradient theories of coupled thermoelasticity and stationary thermal conductivity, are discussed. It is shown, for example, that taking into account the additional parameter of connectivity of gradient fields of deformations and temperatures predicts the appearance of rapidly changing temperature fields and significant localization of heat fluxes in the vicinity of phase contact in inhomogeneous materials. Full article
(This article belongs to the Section Functional Interpolation)
Show Figures

Figure 1

20 pages, 351 KiB  
Article
Negative Order KdV Equation with No Solitary Traveling Waves
by Miguel Rodriguez, Jing Li and Zhijun Qiao
Mathematics 2022, 10(1), 48; https://doi.org/10.3390/math10010048 - 24 Dec 2021
Cited by 4 | Viewed by 2065
Abstract
We consider the negative order KdV (NKdV) hierarchy which generates nonlinear integrable equations. Selecting different seed functions produces different evolution equations. We apply the traveling wave setting to study one of these equations. Assuming a particular type of solution leads us to solve [...] Read more.
We consider the negative order KdV (NKdV) hierarchy which generates nonlinear integrable equations. Selecting different seed functions produces different evolution equations. We apply the traveling wave setting to study one of these equations. Assuming a particular type of solution leads us to solve a cubic equation. New solutions are found, but none of these are classical solitary traveling wave solutions. Full article
(This article belongs to the Special Issue Differential Geometry and Related Integrable Systems)
Show Figures

Figure 1

17 pages, 323 KiB  
Article
Tripled Fixed Points and Existence Study to a Tripled Impulsive Fractional Differential System via Measures of Noncompactness
by Sina Etemad, Mohammed M. Matar, Maria Alessandra Ragusa and Shahram Rezapour
Mathematics 2022, 10(1), 25; https://doi.org/10.3390/math10010025 - 22 Dec 2021
Cited by 27 | Viewed by 2239
Abstract
In this paper, a tripled fractional differential system is introduced as three associated impulsive equations. The existence investigation of the solution is based on contraction principle and measures of noncompactness in terms of tripled fixed point and modulus of continuity. Our results are [...] Read more.
In this paper, a tripled fractional differential system is introduced as three associated impulsive equations. The existence investigation of the solution is based on contraction principle and measures of noncompactness in terms of tripled fixed point and modulus of continuity. Our results are valid for both Kuratowski and Hausdorff measures of noncompactness. As an application, we apply the obtained results to a control problem. Full article
(This article belongs to the Section Difference and Differential Equations)
21 pages, 3512 KiB  
Article
Explicit Stable Finite Difference Methods for Diffusion-Reaction Type Equations
by Humam Kareem Jalghaf, Endre Kovács, János Majár, Ádám Nagy and Ali Habeeb Askar
Mathematics 2021, 9(24), 3308; https://doi.org/10.3390/math9243308 - 19 Dec 2021
Cited by 14 | Viewed by 2782
Abstract
By the iteration of the theta-formula and treating the neighbors explicitly such as the unconditionally positive finite difference (UPFD) methods, we construct a new 2-stage explicit algorithm to solve partial differential equations containing a diffusion term and two reaction terms. One of the [...] Read more.
By the iteration of the theta-formula and treating the neighbors explicitly such as the unconditionally positive finite difference (UPFD) methods, we construct a new 2-stage explicit algorithm to solve partial differential equations containing a diffusion term and two reaction terms. One of the reaction terms is linear, which may describe heat convection, the other one is proportional to the fourth power of the variable, which can represent radiation. We analytically prove, for the linear case, that the order of accuracy of the method is two, and that it is unconditionally stable. We verify the method by reproducing an analytical solution with high accuracy. Then large systems with random parameters and discontinuous initial conditions are used to demonstrate that the new method is competitive against several other solvers, even if the nonlinear term is extremely large. Finally, we show that the new method can be adapted to the advection–diffusion-reaction term as well. Full article
(This article belongs to the Special Issue Application of Iterative Methods for Solving Nonlinear Equations)
Show Figures

Figure 1

20 pages, 2112 KiB  
Article
Deep Learning Models for Predicting Monthly TAIEX to Support Making Decisions in Index Futures Trading
by Duy-An Ha, Chia-Hung Liao, Kai-Shien Tan and Shyan-Ming Yuan
Mathematics 2021, 9(24), 3268; https://doi.org/10.3390/math9243268 - 16 Dec 2021
Cited by 2 | Viewed by 4087
Abstract
Futures markets offer investors many attractive advantages, including high leverage, high liquidity, fair, and fast returns. Highly leveraged positions and big contract sizes, on the other hand, expose investors to the risk of massive losses from even minor market changes. Among the numerous [...] Read more.
Futures markets offer investors many attractive advantages, including high leverage, high liquidity, fair, and fast returns. Highly leveraged positions and big contract sizes, on the other hand, expose investors to the risk of massive losses from even minor market changes. Among the numerous stock market forecasting tools, deep learning has recently emerged as a favorite tool in the research community. This study presents an approach for applying deep learning models to predict the monthly average of the Taiwan Capitalization Weighted Stock Index (TAIEX) to support decision-making in trading Mini-TAIEX futures (MTX). We inspected many global financial and economic factors to find the most valuable predictor variables for the TAIEX, and we examined three different deep learning architectures for building prediction models. A simulation on trading MTX was then performed with a simple trading strategy and two different stop-loss strategies to show the effectiveness of the models. We found that the Temporal Convolutional Network (TCN) performed better than other models, including the two baselines, i.e., linear regression and extreme gradient boosting. Moreover, stop-loss strategies are necessary, and a simple one could be sufficient to reduce a severe loss effectively. Full article
(This article belongs to the Special Issue Mathematics and Financial Economics)
Show Figures

Figure 1

9 pages, 457 KiB  
Article
Generalized Confidence Intervals for Zero-Inflated Pareto Distribution
by Xiao Wang and Xinmin Li
Mathematics 2021, 9(24), 3272; https://doi.org/10.3390/math9243272 - 16 Dec 2021
Cited by 5 | Viewed by 2463
Abstract
This paper considers interval estimations for the mean of Pareto distribution with excess zeros. Three approaches for interval estimation are proposed based on fiducial generalized pivotal quantities (FGPQs), respectively. Simulation studies are performed to assess the performance of the proposed methods, along with [...] Read more.
This paper considers interval estimations for the mean of Pareto distribution with excess zeros. Three approaches for interval estimation are proposed based on fiducial generalized pivotal quantities (FGPQs), respectively. Simulation studies are performed to assess the performance of the proposed methods, along with three measurements to determine comparisons with competing approaches. The advantages and disadvantages of each method are provided. The methods are illustrated using a real phone call dataset. Full article
(This article belongs to the Special Issue Advances in Computational Statistics and Applications)
Show Figures

Figure 1

25 pages, 1653 KiB  
Article
COSMONET: An R Package for Survival Analysis Using Screening-Network Methods
by Antonella Iuliano, Annalisa Occhipinti, Claudia Angelini, Italia De Feis and Pietro Liò
Mathematics 2021, 9(24), 3262; https://doi.org/10.3390/math9243262 - 15 Dec 2021
Cited by 4 | Viewed by 3613
Abstract
Identifying relevant genomic features that can act as prognostic markers for building predictive survival models is one of the central themes in medical research, affecting the future of personalized medicine and omics technologies. However, the high dimension of genome-wide omic data, the strong [...] Read more.
Identifying relevant genomic features that can act as prognostic markers for building predictive survival models is one of the central themes in medical research, affecting the future of personalized medicine and omics technologies. However, the high dimension of genome-wide omic data, the strong correlation among the features, and the low sample size significantly increase the complexity of cancer survival analysis, demanding the development of specific statistical methods and software. Here, we present a novel R package, COSMONET (COx Survival Methods based On NETworks), that provides a complete workflow from the pre-processing of omics data to the selection of gene signatures and prediction of survival outcomes. In particular, COSMONET implements (i) three different screening approaches to reduce the initial dimension of the data from a high-dimensional space p to a moderate scale d, (ii) a network-penalized Cox regression algorithm to identify the gene signature, (iii) several approaches to determine an optimal cut-off on the prognostic index (PI) to separate high- and low-risk patients, and (iv) a prediction step for patients’ risk class based on the evaluation of PIs. Moreover, COSMONET provides functions for data pre-processing, visualization, survival prediction, and gene enrichment analysis. We illustrate COSMONET through a step-by-step R vignette using two cancer datasets. Full article
(This article belongs to the Special Issue Computational Approaches for Data Inspection in Biomedicine)
Show Figures

Figure 1

30 pages, 8413 KiB  
Article
Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling
by Mohammed Algarni, Mashhour A. Alazwari and Mohammad Reza Safaei
Mathematics 2021, 9(24), 3235; https://doi.org/10.3390/math9243235 - 14 Dec 2021
Cited by 37 | Viewed by 3096
Abstract
Using nano-enhanced phase change material (NePCM) rather than pure PCM significantly affects the melting/solidification duration and the stored energy, which are two critical design parameters for latent heat thermal energy storage (LHTES) systems. The present article employs a hybrid procedure based on the [...] Read more.
Using nano-enhanced phase change material (NePCM) rather than pure PCM significantly affects the melting/solidification duration and the stored energy, which are two critical design parameters for latent heat thermal energy storage (LHTES) systems. The present article employs a hybrid procedure based on the design of experiments (DOE), computational fluid dynamics (CFD), artificial neural networks (ANNs), multi-objective optimization (MOO), and multi-criteria decision making (MCDM) to optimize the properties of nano-additives dispersed in a shell and tube LHTES system containing paraffin wax as a phase change material (PCM). Four important properties of nano-additives were considered as optimization variables: volume fraction and thermophysical properties, precisely, specific heat, density, and thermal conductivity. The primary objective was to simultaneously reduce the melting duration and increase the total stored energy. To this end, a five-step hybrid optimization process is presented in this paper. In the first step, the DOE technique is used to design the required simulations for the optimal search of the design space. The second step simulates the melting process through a CFD approach. The third step, which utilizes ANNs, presents polynomial models for objective functions in terms of optimization variables. MOO is used in the fourth step to generate a set of optimal Pareto points. Finally, in the fifth step, selected optimal points with various features are provided using various MCDM methods. The results indicate that nearly 97% of the Pareto points in the considered shell and tube LHTES system had a nano-additive thermal conductivity greater than 180 Wm−1K−1. Furthermore, the density of nano-additives was observed to be greater than 9950 kgm−3 for approximately 86% of the optimal solutions. Additionally, approximately 95% of optimal points had a nano-additive specific heat of greater than 795 Jkg−1K−1. Full article
Show Figures

Figure 1

42 pages, 1092 KiB  
Article
The Representation Theory of Neural Networks
by Marco Armenta and Pierre-Marc Jodoin
Mathematics 2021, 9(24), 3216; https://doi.org/10.3390/math9243216 - 13 Dec 2021
Cited by 10 | Viewed by 4555
Abstract
In this work, we show that neural networks can be represented via the mathematical theory of quiver representations. More specifically, we prove that a neural network is a quiver representation with activation functions, a mathematical object that we represent using a network quiver [...] Read more.
In this work, we show that neural networks can be represented via the mathematical theory of quiver representations. More specifically, we prove that a neural network is a quiver representation with activation functions, a mathematical object that we represent using a network quiver. Furthermore, we show that network quivers gently adapt to common neural network concepts such as fully connected layers, convolution operations, residual connections, batch normalization, pooling operations and even randomly wired neural networks. We show that this mathematical representation is by no means an approximation of what neural networks are as it exactly matches reality. This interpretation is algebraic and can be studied with algebraic methods. We also provide a quiver representation model to understand how a neural network creates representations from the data. We show that a neural network saves the data as quiver representations, and maps it to a geometrical space called the moduli space, which is given in terms of the underlying oriented graph of the network, i.e., its quiver. This results as a consequence of our defined objects and of understanding how the neural network computes a prediction in a combinatorial and algebraic way. Overall, representing neural networks through the quiver representation theory leads to 9 consequences and 4 inquiries for future research that we believe are of great interest to better understand what neural networks are and how they work. Full article
(This article belongs to the Special Issue Mathematics, Statistics and Applied Computational Methods)
Show Figures

Figure 1

19 pages, 8868 KiB  
Article
Global Value Chains of COVID-19 Materials: A Weighted Directed Network Analysis
by Georgios Angelidis, Charalambos Bratsas, Georgios Makris, Evangelos Ioannidis, Nikos C. Varsakelis and Ioannis E. Antoniou
Mathematics 2021, 9(24), 3202; https://doi.org/10.3390/math9243202 - 11 Dec 2021
Cited by 7 | Viewed by 2592
Abstract
The COVID-19 pandemic caused a boom in demand for personal protective equipment, or so-called “COVID-19 goods”, around the world. We investigate three key sectoral global value chain networks, namely, “chemicals”, “rubber and plastics”, and “textiles”, involved in the production of these goods. First, [...] Read more.
The COVID-19 pandemic caused a boom in demand for personal protective equipment, or so-called “COVID-19 goods”, around the world. We investigate three key sectoral global value chain networks, namely, “chemicals”, “rubber and plastics”, and “textiles”, involved in the production of these goods. First, we identify the countries that export a higher value added share than import, resulting in a “value added surplus”. Then, we assess their value added flow diversification using entropy. Finally, we analyze their egonets in order to identify their key affiliates. The relevant networks were constructed from the World Input-Output Database. The empirical results reveal that the USA had the highest surplus in “chemicals”, Japan in “rubber and plastics”, and China in “textiles”. Concerning value added flows, the USA was highly diversified in “chemicals”, Germany in “rubber and plastics”, and Italy in “textiles”. From the analysis of egonets, we found that the USA was the key supplier in all sectoral networks under consideration. Our work provides meaningful conclusions about trade outperformance due to the fact of surplus, trade flow robustness due to the fact of diversification, and trade partnerships due to the egonets analysis. Full article
(This article belongs to the Special Issue Complex Network Modeling: Theory and Applications)
Show Figures

Figure 1

13 pages, 297 KiB  
Article
On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature
by Yanlin Li, Ali H. Alkhaldi, Akram Ali and Pişcoran Laurian-Ioan
Mathematics 2021, 9(24), 3156; https://doi.org/10.3390/math9243156 - 08 Dec 2021
Cited by 29 | Viewed by 2204
Abstract
In this paper, we obtain some topological characterizations for the warping function of a warped product pointwise semi-slant submanifold of the form Ωn=NTl×fNϕk in a complex projective space [...] Read more.
In this paper, we obtain some topological characterizations for the warping function of a warped product pointwise semi-slant submanifold of the form Ωn=NTl×fNϕk in a complex projective space CP2m(4). Additionally, we will find certain restrictions on the warping function f, Dirichlet energy function E(f), and first non-zero eigenvalue λ1 to prove that stable l-currents do not exist and also that the homology groups have vanished in Ωn. As an application of the non-existence of the stable currents in Ωn, we show that the fundamental group π1(Ωn) is trivial and Ωn is simply connected under the same extrinsic conditions. Further, some similar conclusions are provided for CR-warped product submanifolds. Full article
(This article belongs to the Special Issue Submanifolds in Metric Manifolds)
16 pages, 1578 KiB  
Article
Optimization of Sliding Mode Control to Save Energy in a SCARA Robot
by Luis Arturo Soriano, José de Jesús Rubio, Eduardo Orozco, Daniel Andres Cordova, Genaro Ochoa, Ricardo Balcazar, David Ricardo Cruz, Jesus Alberto Meda-Campaña, Alejandro Zacarias and Guadalupe Juliana Gutierrez
Mathematics 2021, 9(24), 3160; https://doi.org/10.3390/math9243160 - 08 Dec 2021
Cited by 35 | Viewed by 5454
Abstract
Sliding mode control is a robust technique that is used to overcome difficulties such as parameter variations, unmodeled dynamics, external disturbances, and payload changes in the position-tracking problem regarding robots. However, the selection of the gains in the controller could produce bigger forces [...] Read more.
Sliding mode control is a robust technique that is used to overcome difficulties such as parameter variations, unmodeled dynamics, external disturbances, and payload changes in the position-tracking problem regarding robots. However, the selection of the gains in the controller could produce bigger forces than are required to move the robots, which requires spending a large amount of energy. In the literature, several approaches were used to manage these features, but some proposals are complex and require tuning the gains. In this work, a sliding mode controller was designed and optimized in order to save energy in the position-tracking problem of a two-degree-of-freedom SCARA robot. The sliding mode controller gains were optimized usinga Bat algorithm to save energy by minimizing the forces. Finally, two controllers were designed and implemented in the simulation, and as a result, adequate controller gains were found that saved energy by minimizing the forces. Full article
(This article belongs to the Special Issue Numerical Simulation and Control in Energy Systems)
Show Figures

Figure 1

12 pages, 259 KiB  
Article
Jensen Functional, Quasi-Arithmetic Mean and Sharp Converses of Hölder’s Inequalities
by Slavko Simić and Vesna Todorčević
Mathematics 2021, 9(23), 3104; https://doi.org/10.3390/math9233104 - 01 Dec 2021
Cited by 6 | Viewed by 1486
Abstract
In this article, we give sharp two-sided bounds for the generalized Jensen functional Jn(f,g,h;p,x). Assuming convexity/concavity of the generating function h, we give exact bounds for the generalized quasi-arithmetic mean [...] Read more.
In this article, we give sharp two-sided bounds for the generalized Jensen functional Jn(f,g,h;p,x). Assuming convexity/concavity of the generating function h, we give exact bounds for the generalized quasi-arithmetic mean An(h;p,x). In particular, exact bounds are determined for the generalized power means in terms from the class of Stolarsky means. As a consequence, some sharp converses of the famous Hölder’s inequality are obtained. Full article
(This article belongs to the Special Issue Recent Trends in Convex Analysis and Mathematical Inequalities)
14 pages, 423 KiB  
Article
A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform
by Ahmad Qazza, Aliaa Burqan and Rania Saadeh
Mathematics 2021, 9(23), 3039; https://doi.org/10.3390/math9233039 - 26 Nov 2021
Cited by 25 | Viewed by 2244
Abstract
In this paper, we use the ARA transform to solve families of fractional differential equations. New formulas about the ARA transform are presented and implemented in solving some applications. New results related to the ARA integral transform of the Riemann-Liouville fractional integral and [...] Read more.
In this paper, we use the ARA transform to solve families of fractional differential equations. New formulas about the ARA transform are presented and implemented in solving some applications. New results related to the ARA integral transform of the Riemann-Liouville fractional integral and the Caputo fractional derivative are obtained and the last one is implemented to create series solutions for the target equations. The procedure proposed in this article is mainly based on some theorems of particular solutions and the expansion coefficients of binomial series. In order to achieve the accuracy and simplicity of the new method, some numerical examples are considered and solved. We obtain the solutions of some families of fractional differential equations in a series form and we show how these solutions lead to some important results that include generalizations of some classical methods. Full article
Show Figures

Figure 1

Back to TopTop