materials-logo

Journal Browser

Journal Browser

Modeling and Analysis of Damage and Failure of Concrete-Like, Brittle and Quasi-Brittle Materials (Second Volume)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 2444

Special Issue Editors


E-Mail Website
Guest Editor
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
Interests: computational mechanics; damage and fracture; peridynamics; fluid–structure interaction; multi-scale modeling; multiphysics analysis; concrete materials and structures; functionally graded materials; data-driven analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Science, Wuhan University of Technology, Wuhan 430070, China
Interests: computational mechanics; dynamics behavior of materials; peridynamics; fluid–structure interaction algorithm; multi-scale finite element method; extreme mechanical behavior and modeling of materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Hydraulic and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
Interests: computational mechanics; damage and fracture; peridynamics; cement-based composites; multi-scale modeling; micromechanics; functionally graded materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
Interests: peridynamics; concrete failure; numerical modeling; dynamic fracture
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Modeling and analysis of damage and failure of materials and structures is an active and persistent challenge in computational mechanics, materials, and various scientific and industrial fields. This Special Issue provides an informative and stimulating forum to enhance academic communications on this challenging topic, focusing on the development and applications of computational theories, numerical and experimental methods, models, and algorithms for modeling and analyzing damage and failure of concrete-like, brittle, and quasi-brittle materials and structures.

Potential topics include—but are not limited to—failure mechanisms and experimental and numerical analyses of concrete-like, brittle, and quasi-brittle materials and structures; multi-scale models and methods for deformation and failure analysis; fluid–structure interaction; concrete corrosion; durability of concrete-like materials and structures; thermomechanical coupling and other multi-physics fracture modeling; dynamic fracture studies; numerical methods and approaches for damage and failure modeling; and data-driven computational mechanics and modeling.

Prof. Dr. Dan Huang
Prof. Dr. Lisheng Liu
Prof. Dr. Zhanqi Cheng
Dr. Liwei Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • concrete-like materials and structures
  • quasi-brittle materials
  • damage and failure
  • dynamic behavior
  • experimental analysis
  • numerical methods
  • multi-scale modeling
  • multi-physics modeling
  • corrosion
  • durability

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 7951 KiB  
Article
A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects
by Huidong Tong, Youliang Chen, Xi Du, Siyu Chen, Yungui Pan, Suran Wang, Bin Peng, Rafig Azzam and Tomas Manuel Fernandez-Steeger
Materials 2024, 17(5), 972; https://doi.org/10.3390/ma17050972 - 20 Feb 2024
Cited by 3 | Viewed by 569
Abstract
In order to optimize the efficiency and safety of gas hydrate extraction, it is essential to develop a credible constitutive model for sands containing hydrates. A model incorporating both cementation and damage was constructed to describe the behavior of hydrate-bearing cemented sand. This [...] Read more.
In order to optimize the efficiency and safety of gas hydrate extraction, it is essential to develop a credible constitutive model for sands containing hydrates. A model incorporating both cementation and damage was constructed to describe the behavior of hydrate-bearing cemented sand. This model is based on the critical state theory and builds upon previous studies. The damage factor Ds is incorporated to consider soil degradation and the reduction in hydrate cementation, as described by plastic shear strain. A computer program was developed to simulate the mechanisms of cementation and damage evolution, as well as the stress-strain curves of hydrate-bearing cemented sand. The results indicate that the model replicates the mechanical behavior of soil cementation and soil deterioration caused by impairment well. By comparing the theoretical curves with the experimental data, the compliance of the model was calculated to be more than 90 percent. The new state-dependent elasto-plastic constitutive model based on cementation and damage of hydrate-bearing cemented sand could provide vital guidance for the construction of deep-buried tunnels, extraction of hydrocarbon compounds, and development of resources. Full article
Show Figures

Figure 1

12 pages, 3722 KiB  
Article
Study on Failure Energy per Unit Area of Concrete Specimens Based on Minimum Energy Dissipation Theory
by Xinyu Liang and Zengbiao Wu
Materials 2024, 17(1), 201; https://doi.org/10.3390/ma17010201 - 30 Dec 2023
Viewed by 588
Abstract
In order to study the strength change of concrete specimens under different loading conditions, based on the principle of minimum energy dissipation, the damage energy per unit area of concrete was studied. By using finite element numerical simulation software for concrete specimens with [...] Read more.
In order to study the strength change of concrete specimens under different loading conditions, based on the principle of minimum energy dissipation, the damage energy per unit area of concrete was studied. By using finite element numerical simulation software for concrete specimens with different failure modes of tension, pressure, bending and torsion, a double-broken line damage constitutive model is adopted. The failure forms of concrete specimens under different loading conditions, as well as the failure area and failure energy of each specimen during loading, are simulated and analyzed. The failure energy per unit area under different failure modes was quantitively calculated, the relationship between the failure area and failure energy consumption under different failure modes was analyzed. The results show that, under different failure modes, the failure area of concrete specimens is different, the energy consumed during failure is different, and the strength is different. However, no matter how the failure mode changes during the failure process, the failure energy W per unit area remains constant and fluctuates in the range of 2.0~6.0 mJ/cm2, which is related to the physical properties of concrete itself. Full article
Show Figures

Figure 1

16 pages, 2142 KiB  
Article
Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials
by Zhiyou Jia, José Aguiar, Sandra Cunha and Carlos de Jesus
Materials 2023, 16(18), 6267; https://doi.org/10.3390/ma16186267 - 18 Sep 2023
Cited by 3 | Viewed by 994
Abstract
Increasing construction and demolition waste (CDW) and the large amount of energy consumption in the building operation process are high-profile issues at present. In the construction industry, recycled aggregated (RA) from CDW can be reutilized in construction, along with green materials, for example, [...] Read more.
Increasing construction and demolition waste (CDW) and the large amount of energy consumption in the building operation process are high-profile issues at present. In the construction industry, recycled aggregated (RA) from CDW can be reutilized in construction, along with green materials, for example, as a road base layer, as aggregate in concrete, etc. Phase change materials (PCM) are often used as building materials due to their good latent heat storage properties. With the use of RA as a matrix to absorb PCM, a thermal performance aggregate can be obtained. This work studied the physical properties of RA from Portugal and combined PCM with RA to prepare a green thermal aggregate through two methodologies using a vacuum and atmospheric pressure. The green aggregate was used in concrete to observe its effect on the compressive strength of concrete. The results showed that the amount of PCM absorbed by the RA mainly depends on the porosity of the matrix material. At the same time, the volume expansion coefficient of PCM was 2.7%, which was not enough to destroy the RA. Ultimately, as the amount of green thermal aggregate increases, the compressive strength of concrete decreases. Green thermal aggregate prepared under vacuum conditions has a greater negative impact on the compressive strength of concrete. Full article
Show Figures

Figure 1

Back to TopTop