Polymer Blends and Compatibilization 2018

Guest Editors:

Prof. Dr. Francesco Paolo La Mantia
Università degli Studi di Palermo; Department of Civil, Environment, Aerospace, Materials Engineering; Palermo, Italy
francescopaolo.lamantia@unipa.it

Dr. Maria Chiara Mistretta
Department of Civil, Environmental, Aerospace, Materials Engineering, Università degli Studi di Palermo, Palermo, Italy
mc.mistretta@gmail.com

Deadline for manuscript submissions:
closed (30 November 2018)

Message from the Guest Editors

Polymer Blends are a class of multiphase polymer materials that present intermediary properties among their components. Blending of commercial polymers is the most efficient and cheap method to produce new polymeric materials that meet specific requirements. However, achieving the desired properties—mechanical strength, toughness, durability, etc—depends mainly on the final morphology achieved from the blends which, in turn, depends on the chemical nature and molecular structure of the macromolecules of the components. The different chemical nature of the components leads, in most cases, to bad morphology with voids, defects and a lack of adhesion between the phases and consequent poor properties. Moreover, the dispersed droplets can coalesce during processing, changing the morphology of the blends. The morphology must be “stabilized” in order to avoid any change during processing.

For further information, please click:
http://www.mdpi.com/si/materials/poly_blends_compat

Prof. Francesco La Mantia
Dr. Maria Chiara Mistretta
Guest Editors

Special Issue
Message from the Editor-in-Chief

Materials (ISSN 1996-1944) was launched in 2008. The journal covers fourteen comprehensive topics: Biomaterials; Energy Materials; Composites; Structure Analysis; Porous Materials; Manufacturing Processes; Advanced Nanomaterials; Smart Materials; Thin Films; Catalytic Materials; Carbon Materials; Materials Chemistry; Materials Physics; Optics and Photonics; Corrosion; Building Materials. The distinguished and dedicated editorial board and our strict peer-review process ensure the highest degree of scientific rigor and review of all published articles.

Materials provides an unique opportunity to contribute high quality articles and to take advantage of its large readership.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases. Citations available in PubMed, full-text archived in PubMed Central.

CiteScore (2018 Scopus data): 3.26, which equals rank 97/439 (Q1) in 'General Materials Science'.